Using covering spaces to model soap films

Maurizio Paolini (maurizio.paolini@unicatt.it)
Dipartimento di Matematica e Fisica "Niccolò Tartaglia"
Università Cattolica del Sacro Cuore, Brescia

Okinawa, march 7, 2017

People involved

Working in our group:

S. Amato, G. Bellettini, M. P., Constrained BV functions on covering spaces for minimal networks and Plateau's type problems, Adv. Calc. Var.
Marcello Carioni, Franco Pasquarelli, Alessandra Pluda

People involved

Working in our group:
S. Amato, G. Bellettini, M. P., Constrained BV functions on covering spaces for minimal networks and Plateau's type problems, Adv. Calc. Var.
Marcello Carioni, Franco Pasquarelli, Alessandra Pluda
Working on the same subject:
K. Brakke, Soap films and covering spaces, Journal of Geometric Analysis, 1995

People involved

Working in our group:
S. Amato, G. Bellettini, M. P., Constrained BV functions on covering spaces for minimal networks and Plateau's type problems, Adv. Calc. Var.
Marcello Carioni, Franco Pasquarelli, Alessandra Pluda
Working on the same subject:
K. Brakke, Soap films and covering spaces, Journal of Geometric Analysis, 1995
A. Chambolle, D. Cremers, T. Pock, A convex approach to minimal partitions, SIAM Journal on Imaging Sciences, 2012

Outline

- Motivation
- Covering space
- Knots and links
- The tripod (model for the triple junction)
- The convexification problem
- Other examples

Motivation

Find a material interface (say soap film) with minimal area and given boundary in 3D
Corresponding evolution problem (Mean Curvature Flow) Using the BV machinery [De Giorgi], suitable e.g. for relaxation via diffused interface
Features: Knotted curves in 3D, triple junctions

Motivation

Find a material interface (say soap film) with minimal area and given boundary in 3D
Corresponding evolution problem (Mean Curvature Flow) Using the BV machinery [De Giorgi], suitable e.g. for relaxation via diffused interface
Features: Knotted curves in 3D, triple junctions

A "too" simple example

Γ is the equator of the unit sphere
Ω is an enlarged sphere
Force $u=1$ and $u=0$ outside the unit sphere Minimize the total variation in $B V(\Omega ;\{0,1\})$ subject to the constraint
The jump set Σ of a minimizer is the desired soap film

Motivation

Find a material interface (say soap film) with minimal area and given boundary in 3D
Corresponding evolution problem (Mean Curvature Flow) Using the BV machinery [De Giorgi], suitable e.g. for relaxation via diffused interface
Features: Knotted curves in 3D, triple junctions

A "too" simple example

Γ is the equator of the unit sphere
Ω is an enlarged sphere
Force $u=1$ and $u=0$ outside the unit sphere Minimize the total variation in $B V(\Omega ;\{0,1\})$ subject to the constraint
The jump set Σ of a minimizer is the desired soap film
We trick the Plateau problem into a phase-separation problem, the two phases being $\{u=0\}$ and $\{u=1\}$

Allen-Cahn equation: brief review

Reaction/diffusion equation arising in the context of phase transitions with a diffused interface:

$$
\left\{\begin{array}{l}
\epsilon \partial_{t} u-\epsilon \Delta u+\frac{1}{\epsilon} f(u)=0 \quad \text { in } \Omega \\
+ \text { initial and boundary conditions }
\end{array}\right.
$$

Allen-Cahn equation: brief review

Reaction/diffusion equation arising in the context of phase transitions with a diffused interface:

$$
\left\{\begin{array}{l}
\epsilon \partial_{t} u-\epsilon \Delta u+\frac{1}{\epsilon} f(u)=0 \quad \text { in } \Omega \\
+ \text { initial and boundary conditions }
\end{array}\right.
$$

- u : order parameter (phase indicator),
- Ω : domain in $\mathbb{R}^{d}, d=2,3$,
- $\epsilon>0$: small relaxation parameter,
- $f=F^{\prime}$: derivative of a double equal well potential F (or double-obstacle: deep
 quench limit [Elliott et al]).

Allen-Cahn equation: brief review

Reaction/diffusion equation arising in the context of phase transitions with a diffused interface:

$$
\left\{\begin{array}{l}
\epsilon \partial_{t} u-\epsilon \Delta u+\frac{1}{\epsilon} f(u)=0 \quad \text { in } \Omega \\
+ \text { initial and boundary conditions }
\end{array}\right.
$$

- u : order parameter (phase indicator),
- Ω : domain in $\mathbb{R}^{d}, d=2,3$,
- $\epsilon>0$: small relaxation parameter,
- $f=F^{\prime}$: derivative of a double equal well potential F (or double-obstacle: deep
 quench limit [Elliott et al]).
The solution u exhibits a thin transition layer $\mathcal{O}(\epsilon)$-wide between the phase $u \approx 0$ and the phase $u \approx 1$

Singular limit $\epsilon \rightarrow 0$

The transition layer approximates a sharp interface that moves by mean curvature:

$$
V=-\kappa
$$

[X. Chen, Bronsard-Kohn, Evans-Soner-Souganidis,] [Barles-Soner-Souganidis, ...]

Optimal $\mathcal{O}\left(\epsilon^{2}\right)$ or quasi-optimal $\mathcal{O}\left(\epsilon^{2}|\log \epsilon|\right)$ error estimate. [Nochetto-P.-Verdi, Nochetto-Verdi, Bellettini-P.]
A.C. is the gradient flow of

$$
\mathcal{F}_{\epsilon}(u):=\frac{\epsilon}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{\epsilon} \int_{\Omega} F(u) d x
$$

Convergence as $\epsilon \rightarrow 0$

$\mathcal{F}_{\epsilon} \Gamma$-converges to $c_{0} \mathcal{F}$ with $\mathcal{F}(u):=\int_{\Omega}|D u|, c_{0}$ a suitable constant depending on $F, u \in B V(\Omega,\{0,1\})$

Motivation 2

This simple BV approach for the circle example does not work in general. The curve Γ must be such that it lies in the boundary of a convex (or at least mean-convex) body in \mathbb{R}^{3}

Motivation 2

This simple $B V$ approach for the circle example does not work in general. The curve Γ must be such that it lies in the boundary of a convex (or at least mean-convex) body in \mathbb{R}^{3}

Motivation 2

This simple $B V$ approach for the circle example does not work in general. The curve Γ must be such that it lies in the boundary of a convex (or at least mean-convex) body in \mathbb{R}^{3}

[images courtesy of Emanuele Paolini]

Motivation 3

Problem: the desired surface Σ does not naturally separate two phases near 「

Idea

Work on a "covering space" Y of $\Omega=\mathbb{R}^{3} \backslash \Gamma$ (if regularity of $\partial \Omega$ is needed Γ can be replaced by a tubular neighborhood Γ_{ϵ})
$\Omega=B \backslash \Gamma_{\epsilon}$, where B is a large ball containing Γ_{ϵ} or $B=\mathbb{S}^{3}$ $p: Y \rightarrow \Omega$ is a covering (of finite degree k)

Find $u \in B V(Y ;\{0,1\})$ such that

- u is given near the boundary of Ω
- u satisfies the constraint

$$
\sum_{y \in p^{-1}(x)} u(y)=1
$$

on the fiber above any $x \in \Omega$

Covering spaces

Ω is path-connected.
$p: Y \rightarrow \Omega$ is locally trivial
For any $x \in \Omega$ there is a small neighborhood U such that $p^{-1}(U)$ is topologically the disjoint union of k copies of $U . k$ (degree of the covering) is locally constant in Ω, hence constant.
It is not finite in general, but for our purposes $k<\infty$

Covering spaces 2

A covering can be globally trivial: Y is the disjoint union of k copies of Ω, but the interesting case is when Y is connected.

Covering spaces 2

A covering can be globally trivial: Y is the disjoint union of k copies of Ω, but the interesting case is when Y is connected. Example ($k=2$)
$\Omega=\mathbb{S}^{2} \backslash\{A, B\}$

- Start with two copies of Ω (deck 1 and deck 2)
- cut along the segment $A B$
- glue deck 1 above with deck 2 below and viceversa

We obtain a nontrivial covering of degree 2

Kansai International Airport

Kansai International Airport

Terminal 2

Maurizio Paolini (maurizio.paolini@unicatt.it) Using covering spaces to model soap films

Covering spaces 3

Important property If $\gamma:[0,1] \rightarrow \Omega$ is a closed curve with $\gamma(0)=\gamma(1)=x$, then after chosing $y \in p^{-1}(x)$ we can "lift" γ into $\gamma_{\#}:[0,1] \rightarrow Y$ with $\gamma_{\#}(0)=y$, continuous and such that $p \circ \gamma_{\#}=\gamma$.
In general $\gamma_{\#}(1) \in p^{-1}(x)$ is different from $\gamma_{\#}(0)$ and independent on continuous deformations of $\gamma: \gamma \in \pi_{1}(\Omega, x)$ acts on the fiber at X
$\pi_{1}(\Omega, x)$ is the fundamental group of Ω with base point x

Covering spaces 3

Important property If $\gamma:[0,1] \rightarrow \Omega$ is a closed curve with $\gamma(0)=\gamma(1)=x$, then after chosing $y \in p^{-1}(x)$ we can "lift" γ into $\gamma_{\#}:[0,1] \rightarrow Y$ with $\gamma_{\#}(0)=y$, continuous and such that $p \circ \gamma_{\#}=\gamma$.
In general $\gamma_{\#}(1) \in p^{-1}(x)$ is different from $\gamma_{\#}(0)$ and independent on continuous deformations of $\gamma: \gamma \in \pi_{1}(\Omega, x)$ acts on the fiber at x
$\pi_{1}(\Omega, x)$ is the fundamental group of Ω with base point x

Trivial example

If Ω is simply connected \Rightarrow covering is globally trivial

Basic example

Remark

In this perspective the "point at infinity" of \mathbb{R}^{2} is important. We prefer to work in \mathbb{S}^{2}. Conversely using \mathbb{R}^{3} or \mathbb{S}^{3} is basically equivalent (in dimension 3 a curve cannot be obstructed by a single point)

Basic example

Remark

In this perspective the "point at infinity" of \mathbb{R}^{2} is important. We prefer to work in \mathbb{S}^{2}. Conversely using \mathbb{R}^{3} or \mathbb{S}^{3} is basically equivalent (in dimension 3 a curve cannot be obstructed by a single point)

Knot/link $K, k=2$

- Take a Seifert surface S of the knot
- Start with two copies of $\Omega:=\mathbb{R}^{3} \backslash K$ (deck 1 and deck 2)
- Cut them along S and glue back with a deck exchange

Basic example

Remark

In this perspective the "point at infinity" of \mathbb{R}^{2} is important. We prefer to work in \mathbb{S}^{2}. Conversely using \mathbb{R}^{3} or \mathbb{S}^{3} is basically equivalent (in dimension 3 a curve cannot be obstructed by a single point)

Knot/link $K, k=2$

- Take a Seifert surface S of the knot
- Start with two copies of $\Omega:=\mathbb{R}^{3} \backslash K$ (deck 1 and deck 2)
- Cut them along S and glue back with a deck exchange

Equivalently: Start with $X=\{$ paths γ starting at $x\}$

- $\gamma_{1} \sim \gamma_{2}$ if $\gamma_{1}(1)=\gamma_{2}(1)$ and
- $\gamma_{1} \gamma_{2}^{-1}$ has even linking number with K

Define $Y=X / \sim, p(\gamma)=\gamma(1) \in \Omega$

Basic example 2

Wirtinger presentation

$<a, b, \ldots ; r_{1}, r_{2}, \cdots>$

In this case γ has even linking number iff the corresponding word in the group presentation has even length
$<a, b ; a b a=b a b>$ is a Wirtinger presentation of the trefoil knot; $<x, y ; x^{2}=y^{3}>$ is not a Wirtinger p. of the trefoil knot

Constructing a Seifert surface

There are many ways of constructing a Seifert surface, one is shown in the picture

Now that we have a "double" $(k=2)$ covering of Ω we shall consider functions $u \in S_{0}$ with

$$
S_{0}:=\left\{u \in B V(Y ;\{0,1\}): \sum_{y \in p^{-1}(x)} u(y)=1\right\}
$$

Functions in S_{0} must jump when circling Γ once along small curves \Rightarrow the jump set must touch 「 at all points. We have no control on the topology, but this is not a problem

The BV setting 2

For $u \in S_{0}$ we can define the energy

$$
\mathcal{F}(u):=\frac{1}{2} \int_{Y}|D u|
$$

Due to the constraint the jump set projects nicely on Ω and we account the projected jump twice, hence the factor $1 / 2$
The coarea formula allows to convexify S_{0} into

$$
S:=\left\{u \in B V(Y,[0,1]): \sum_{p(y)=x} u(y)=1\right\}
$$

(same energy) and get an essentially equivalent problem

Warning!

This is specific to the $k=2$ case

Brakke approach in the case $k=2$

Strictly related: he works in the context of currents on the covering space Y, the constraint is imposed by constructing a higher-level covering W of Y made of "pairs" of distinct points on each fiber This approach shows its power in the case $k>2$ but makes sense also for $k=2$
The boundary of a flat chain in Y can be associated (in infinite ways) to a current T in W and we seek to minimize the mass of T (that represents the soap film itself) obtaining the "film mass"

The tripod

Model problem to tackle triple junctions:

$$
\Omega:=\mathbb{S}^{2} \backslash\{A, B, C\}
$$

where A, B, C are the vertices of an equilateral triangle. The solution that we would like to see is the "tripod" To guarantee that 「 touches all three points coverings of degree 2 do not
 work...

This is the solution of the Steiner problem (angles of 120 degrees)

A covering for the tripod

For $k=3$ a natural construction by cut \& paste is obtained by cutting three copies of \mathbb{S}^{3} along two of the three sides, say $A B$ and $B C$ and glue them again according to given permutations σ_{1} and σ_{2} of the three strata

The only working choice turns out to be

$$
\sigma_{1}=(1,2,3), \quad \sigma_{2}=\sigma_{1}^{-1}=(1,3,2)
$$

and again minimize $\mathcal{F}(u):=\frac{1}{2} \int_{Y}|D u|$ on the domain

$$
S_{0}:=\left\{u \in B V(Y ;\{0,1\}): \sum_{p(y)=x} u(y)=1\right\}
$$

[show video]

Convexification is tricky

$$
S:=\left\{u \in B V(Y ;[0,1]): \sum_{p(y)=x} u(y)=1\right\}
$$

If we minimize $\int_{Y}|D u|$, the possibility of mixing all three "phases" allows to obtain a lower energy than for the nonconvex problem

Convexification is tricky

$$
S:=\left\{u \in B V(Y ;[0,1]): \sum_{p(y)=x} u(y)=1\right\}
$$

If we minimize $\int_{Y}|D u|$, the possibility of mixing all three "phases" allows to obtain a lower energy than for the nonconvex problem

Brakke: "film mass"

Convexification is tricky

$$
S:=\left\{u \in B V(Y ;[0,1]): \sum_{p(y)=x} u(y)=1\right\}
$$

If we minimize $\int_{Y}|D u|$, the possibility of mixing all three "phases" allows to obtain a lower energy than for the nonconvex problem

Brakke: "film mass"

Chambolle et al.: "local convex envelope"

\Rightarrow the same energy (extension of \mathcal{F} to the convexified domain S) in the case of the tripod

Trivializing the tripod example

Since this example is very special, we can restate it in a more usual setting by restricting Ω to Ω_{T}, the triangle $A B C$, thus obtaining a globally trivial 3-covering with restrictions of u on the three decks that we can denote

$$
u_{1}, u_{2}, u_{3} \in B V\left(\Omega_{T},[0,1]\right), \quad \sum_{i} u_{i}=1
$$

Mixture of all three phases inside the small triangle leads to total variation smaller than that of the tripod

Identifying the convexified

The Brakke's "film mass" turns out to be

$$
\mathcal{F}(u)=\sup _{\varphi \in K} \sum_{i} \int_{\Omega_{T}} u_{i} \operatorname{div} \varphi_{i} d x
$$

where
$K=\left\{\varphi_{i} \in\left[C_{c}^{\infty}\left(\Omega_{T}\right)\right]^{3}, i=1,2,3:\left|\varphi_{i}(x)-\varphi_{j}(x)\right|_{2} \leq 2 \forall i \neq j, x \in \Omega\right\}$
In the case $u_{1} \in W^{1,1}$ a lengthy computation shows that this can be computed as
$\mathcal{F}(u)=\frac{1}{3} \int_{\Omega_{T}}$ steinerdist $\left(\nabla\left(u_{1}-u_{2}\right), \nabla\left(u_{2}-u_{3}\right), \nabla\left(u_{3}-u_{1}\right)\right) d x$
consistent with the so-called local convex envelope of Chambolle et al.

Other examples

THANK YOU FOR YOUR PATIENCE!

