Curvature flow with nonconvex anisotropy relaxed with a well-posed Allen-Cahn system
 Nonconvex curvature flow and the bidomain system

Maurizio Paolini
Università Cattolica di Brescia
FBP 2012, 11-15 June 2012

joint work with Giovanni Bellettini and Franco Pasquarelli

Outline of the talk

- The bidomain system
- Anisotropy
- Anisotropic mean curvature flow
- Combined anisotropy and nonconvexity
- Numerical simulations

The bidomain problem is a singularly perturbed degenerate parabolic system of two reaction-diffusion equations in the unknowns u_{1} and $u_{2}: \Omega \rightarrow \mathbb{R}$:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{1}\left(\nabla u_{1}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0 \\
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{2}\left(\nabla u_{2}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0
\end{array}\right.
$$

in $\Omega \in \mathbb{R}^{d}$ with appropriate initial and boundary conditions. $T_{1,2}$ are the duality mappings of two strictly convex anisotropies $\gamma_{1,2}, f=W^{\prime}$ is the derivative of the quartic double-well potential $W(s)=\left(s^{2}-1\right)^{2}$,
 $\varepsilon>0$ is a small relaxation parameter.

The bidomain system

The bidomain problem is a singularly perturbed degenerate parabolic system of two reaction-diffusion equations in the unknowns u_{1} and $u_{2}: \Omega \rightarrow \mathbb{R}$:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{1}\left(\nabla u_{1}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0 \\
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{2}\left(\nabla u_{2}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0
\end{array}\right.
$$

in $\Omega \in \mathbb{R}^{d}$ with appropriate initial and boundary conditions. $T_{1,2}$ are the duality mappings of two strictly convex anisotropies $\gamma_{1,2}, f=W^{\prime}$ is the derivative of the quartic double-well potential $W(s)=\left(s^{2}-1\right)^{2}$,
 $\varepsilon>0$ is a small relaxation parameter.
It can be generalized to more components u_{1}, \ldots, u_{m}.

Origin: propagation of the electric stimulus in the myocardium

The so-called bidomain model derives by homogeneization from a microscopic model of the cardiac tissue.

- $u^{i}\left(=u_{1}\right)$: intra-cellular potential,
- $u^{e}\left(=-u_{2}\right)$: extra-cellular potential, defined in two disjoint domains with different anisotropic structure and a common boundary.
After homogeneization they are defined in the common domain Ω. Aim: Simulate a complete heart-beat, but specifically the depolarization phase.
[Hodgkin-Huxley, Fitzhugh-Nagumo,...]
Deeply numerically investigated by [Colli Franzone et al]

Bidomain model (electro-cardiology): u^{i}, u^{e}	Our bidomain system $u_{1}=u^{i}, u_{2}=-u^{e}$
Unequal wells:	
Equal wells:	
Linear anisotropies $M^{i} \nabla u^{i}, M^{i} \nabla u^{e}$	Nonlinear anisotropies $T_{1}\left(\nabla u_{1}\right), T_{2}\left(\nabla u_{2}\right)$
Recovery variable w	

The anisotropy in the bidomain model

Original bidomain model in electro-cardiology (no recovery variable):

$$
\left\{\begin{array}{l}
\partial_{t}\left(u^{i}-u^{e}\right)-\varepsilon \operatorname{div} M^{i} \nabla u^{i}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0 \\
\partial_{t}\left(u^{i}-u^{e}\right)+\varepsilon \operatorname{div} M^{e} \nabla u^{e}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0
\end{array}\right.
$$

Matrices M^{i} and M^{e} (in general depending on position) are symmetric positive definite with common eigenvectors consistent with fiber orientation. The eigenvalues $\lambda_{k}^{i}, \lambda_{k}^{e}, k=1,2,3$ come from the homogeneization procedure of the microscopic geometry and depend mainly on the shape of the cells.

Special case $M^{e}=\rho M^{i}$ (equal anisotropic ratio) the system reduces to a single reaction-diffusion Allen-Cahn equation for

The anisotropy in the bidomain model

Original bidomain model in electro-cardiology (no recovery variable):

$$
\left\{\begin{array}{l}
\partial_{t}\left(u^{i}-u^{e}\right)-\varepsilon \operatorname{div} M^{i} \nabla u^{i}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0 \\
\partial_{t}\left(u^{i}-u^{e}\right)+\varepsilon \operatorname{div} M^{e} \nabla u^{e}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0
\end{array}\right.
$$

Matrices M^{i} and M^{e} (in general depending on position) are symmetric positive definite with common eigenvectors consistent with fiber orientation. The eigenvalues $\lambda_{k}^{i}, \lambda_{k}^{e}, k=1,2,3$ come from the homogeneization procedure of the microscopic geometry and depend mainly on the shape of the cells.

Special case $M^{e}=\rho M^{i}$ (equal anisotropic ratio) the system reduces to a single reaction-diffusion Allen-Cahn equation for $u=u^{i}-u^{e}$
However equal anisotropic ratio is not physiologically feasible.

Formal singular limit for the bidomain model in e-c

Formal matched asymptotics suggests that $u^{i}-u^{e}$ develops a transition region of thickness $\mathcal{O}(\varepsilon)$ moving with normal velocity

$$
V=\gamma(\nu)\left[c_{W}-\varepsilon \kappa_{\gamma}+\mathcal{O}\left(\varepsilon^{2}\right)\right]
$$

[Bellettini-Colli Franzone-P.]
where γ describes a suitable combined anisotropy, κ_{γ} is the corresponding anisotropic curvature,
c_{W} depends on the potential W and $c_{W}=0$ in case of equal wells.

Anisotropy

Described by a (possibly nonsimmetric) norm $\gamma: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

- $\gamma(\xi) \geq 0 \quad \forall \xi \in \mathbb{R}^{d} ; \quad \gamma(\xi)=0 \Longleftrightarrow \xi=0$
- $\gamma(t \xi)=t \gamma(\xi) \quad \forall t \geq 0$
- $\gamma(\xi+\eta) \leq \gamma(\xi)+\gamma(\eta)$

Dual norm:
Duality map (nonlinear, monotone, homogeneous of degree one):

Anisotropy

Described by a (possibly nonsimmetric) norm $\gamma: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

- $\gamma(\xi) \geq 0 \quad \forall \xi \in \mathbb{R}^{d} ; \quad \gamma(\xi)=0 \Longleftrightarrow \xi=0$
- $\gamma(t \xi)=t \gamma(\xi) \quad \forall t \geq 0$
- $\gamma(\xi+\eta) \leq \gamma(\xi)+\gamma(\eta)$

Dual norm: $\varphi\left(\xi^{\star}\right)=\gamma^{o}\left(\xi^{\star}\right)=\max _{\gamma(\xi) \leq 1} \xi \cdot \xi^{\star}$
Duality map (nonlinear, monotone, homogeneous of degree one):

Anisotropy

Described by a (possibly nonsimmetric) norm $\gamma: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

- $\gamma(\xi) \geq 0 \quad \forall \xi \in \mathbb{R}^{d} ; \quad \gamma(\xi)=0 \Longleftrightarrow \xi=0$
- $\gamma(t \xi)=t \gamma(\xi) \quad \forall t \geq 0$
- $\gamma(\xi+\eta) \leq \gamma(\xi)+\gamma(\eta)$

Dual norm: $\varphi\left(\xi^{\star}\right)=\gamma^{\circ}\left(\xi^{\star}\right)=\max _{\gamma(\xi) \leq 1} \xi \cdot \xi^{\star}$
Duality map (nonlinear, monotone, homogeneous of degree one):

$$
T\left(\xi^{\star}\right)=\frac{1}{2} \nabla_{\xi^{\star}}\left[\gamma\left(\xi^{\star}\right)\right]^{2}
$$

[Wheeler-McFadden, Bellettini-P.]

Anisotropy (2)

Wulff shape: $W_{\gamma}=\{\varphi(\xi) \leq 1\}$
Frank diagram: $F_{\gamma}=\{\gamma(\xi) \leq 1\}$

$$
T: F_{\gamma} \rightarrow W_{\gamma}
$$

Anisotropy (2)

Wulff shape: $W_{\gamma}=\{\varphi(\xi) \leq 1\}$
Frank diagram: $\boldsymbol{F}_{\gamma}=\{\gamma(\xi) \leq 1\}$

$$
T: F_{\gamma} \rightarrow W_{\gamma}
$$

Linear anisotropy

$$
[\gamma(\xi)]^{2}=\xi^{T} A \xi, \quad A \text { symmetric positive definite. }
$$

So that $[\varphi(\xi)]^{2}=\xi^{T} A^{-1} \xi$ and $T(\xi)=A \xi$.
\square Both W_{γ} and F_{γ} have smooth boundary (hence φ and γ strictly convex)

Anisotropy (2)

Wulff shape: $W_{\gamma}=\{\varphi(\xi) \leq 1\}$
Frank diagram: $F_{\gamma}=\{\gamma(\xi) \leq 1\}$

$$
T: F_{\gamma} \rightarrow W_{\gamma}
$$

Linear anisotropy

$$
[\gamma(\xi)]^{2}=\xi^{T} A \xi, \quad A \text { symmetric positive definite. }
$$

So that $[\varphi(\xi)]^{2}=\xi^{T} A^{-1} \xi$ and $T(\xi)=A \xi$.

Strictly convex anisotropy

Both W_{γ} and F_{γ} have smooth boundary (hence φ and γ strictly convex).

Anisotropy (3)

Cristalline anisotropy

W_{γ} is a convex polygon/polyhedron (and so is F_{γ}.) T is multivalued maximal monotone.
[Taylor, Giga, Rybka, Bellettini-Novaga-P.,...]

Anisotropy (3)

Cristalline anisotropy

W_{γ} is a convex polygon/polyhedron (and so is F_{γ}.)
T is multivalued maximal monotone.
[Taylor, Giga, Rybka, Bellettini-Novaga-P.,...]
Nonconvex anisotropy
F_{γ} is not convex: illposedness of a.m.c.f.

γ is not a norm

> [Fierro-Goglione-P.,...]

Anisotropic mean curvature flow

- $\nu_{\gamma}=\frac{\nu}{\gamma(\nu)}$
- Cahn-Hoffman vector: $n_{\gamma}=T\left(\nu_{\gamma}\right)$
- Anisotropic mean curvature: $\kappa_{\gamma}=\operatorname{div} n_{\gamma}$
initial and boundary conditions

Anisotropic mean curvature flow

- $\nu_{\gamma}=\frac{\nu}{\gamma(\nu)}$
- Cahn-Hoffman vector: $n_{\gamma}=T\left(\nu_{\gamma}\right)$
- Anisotropic mean curvature: $\kappa_{\gamma}=\operatorname{div} n_{\gamma}$

Anisotropic mean curvature flow

$$
V_{\gamma}=\mathbf{V} \cdot \nu_{\gamma}=-\kappa_{\gamma} \quad \Longleftrightarrow \quad V_{\nu}=-\gamma(\nu) \kappa_{\gamma}
$$

initial and boundary conditions

Anisotropic mean curvature flow

- $\nu_{\gamma}=\frac{\nu}{\gamma(\nu)}$
- Cahn-Hoffman vector: $n_{\gamma}=T\left(\nu_{\gamma}\right)$
- Anisotropic mean curvature: $\kappa_{\gamma}=\operatorname{div} n_{\gamma}$

Anisotropic mean curvature flow

$$
V_{\gamma}=\mathbf{V} \cdot \nu_{\gamma}=-\kappa_{\gamma} \quad \Longleftrightarrow \quad V_{\nu}=-\gamma(\nu) \kappa_{\gamma}
$$

Allen-Cahn relaxation

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} u-\varepsilon \operatorname{div} T(\nabla u)+\frac{1}{\varepsilon} f(u)=0 \quad \text { in } \Omega \times(0, T) \\
+ \text { initial and boundary conditions }
\end{array}\right.
$$

Singular limit $\varepsilon \rightarrow 0$: anisotropic m.c.f. $V_{\gamma}=-\kappa_{\gamma}$

The bidomain system: combined anisotropy
Recall:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{1}\left(\nabla u_{1}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0 \\
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{2}\left(\nabla u_{2}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0
\end{array}\right.
$$

where $T_{1,2}(\xi)=\frac{1}{2} \nabla_{\xi}\left[\gamma_{1,2}(\xi)\right]^{2}$

Linear anisotropies generally produce a nonlinear combined

anisotrony-
(2) Strictly convex anisotropies (even linear) can produce a nonconvex combined anisotropy.

The bidomain system: combined anisotropy
Recall:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{1}\left(\nabla u_{1}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0 \\
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{2}\left(\nabla u_{2}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0
\end{array}\right.
$$

where $T_{1,2}(\xi)=\frac{1}{2} \nabla_{\xi}\left[\gamma_{1,2}(\xi)\right]^{2}$
The combined anisotropy γ is defined by

$$
\gamma^{-2}=\gamma_{1}^{-2}+\gamma_{2}^{-2}
$$

2 Strictly convex anisotropies (even linear) can produce a nonconvex combined anisotropy.

The bidomain system: combined anisotropy
Recall:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{1}\left(\nabla u_{1}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0 \\
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{2}\left(\nabla u_{2}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0
\end{array}\right.
$$

where $T_{1,2}(\xi)=\frac{1}{2} \nabla_{\xi}\left[\gamma_{1,2}(\xi)\right]^{2}$
The combined anisotropy γ is defined by

$$
\gamma^{-2}=\gamma_{1}^{-2}+\gamma_{2}^{-2}
$$

Remarks
(1) Linear anisotropies generally produce a nonlinear combined anisotropy;

The bidomain system: combined anisotropy

Recall:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{1}\left(\nabla u_{1}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0 \\
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{2}\left(\nabla u_{2}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0
\end{array}\right.
$$

where $T_{1,2}(\xi)=\frac{1}{2} \nabla_{\xi}\left[\gamma_{1,2}(\xi)\right]^{2}$
The combined anisotropy γ is defined by

$$
\gamma^{-2}=\gamma_{1}^{-2}+\gamma_{2}^{-2}
$$

Remarks

(1) Linear anisotropies generally produce a nonlinear combined anisotropy;
(2) Strictly convex anisotropies (even linear) can produce a nonconvex combined anisotropy.

The singular limit $\varepsilon \rightarrow 0$

Formal matched asymptotics suggests that the sum $u_{1}+u_{2}$ develops a thin $\mathcal{O}(\varepsilon)$-wide transition region that moves approximately by γ-anisotropic mean curvature flow:

$$
V_{\gamma}=-\kappa_{\gamma}+\mathcal{O}(\varepsilon)
$$

The singular limit $\varepsilon \rightarrow 0$

Formal matched asymptotics suggests that the sum $u_{1}+u_{2}$ develops a thin $\mathcal{O}(\varepsilon)$-wide transition region that moves approximately by γ-anisotropic mean curvature flow:

$$
V_{\gamma}=-\kappa_{\gamma}+\mathcal{O}(\varepsilon)
$$

Anisotropic mean curvature flow

γ is not guaranteed to be convex. If it is, then it is a norm and we have anisotropic curvature flow.

The singular limit $\varepsilon \rightarrow 0$

Formal matched asymptotics suggests that the sum $u_{1}+u_{2}$ develops a thin $\mathcal{O}(\varepsilon)$-wide transition region that moves approximately by γ-anisotropic mean curvature flow:

$$
V_{\gamma}=-\kappa_{\gamma}+\mathcal{O}(\varepsilon)
$$

Anisotropic mean curvature flow

γ is not guaranteed to be convex. If it is, then it is a norm and we have anisotropic curvature flow.

Asymptotic Allen-Cahn approximation

The bidomain system behaves (formally) like the anisotropic Allen-Cahn equation (with the combined anisotropy) as $\epsilon \rightarrow 0$.

Some known results

(1) Wellposedness of the bidomain model by [Colli Franzone-Savaré] in case of linear anisotropies
(2) Formal matched asymptotics up to second order shows that we should expect an optimal error $\mathcal{O}(\varepsilon)$ between the zero-level of $H_{1}+\|$ and anisotronic mean curvature flow
(3) -convergence result for the stationary bidomain system consistent with the formal asumntotics hut without a complete identification of the Γ-limit
(1) Wellposedness of the bidomain model by [Colli Franzone-Savaré] in case of linear anisotropies
(2) Formal matched asymptotics up to second order shows that we should expect an optimal error $\mathcal{O}(\varepsilon)$ between the zero-level of $u_{1}+u_{2}$ and anisotropic mean curvature flow
[Bellettini-Colli Franzone-P.]
(9) Numerical simulations confirm the formal result
(1) Wellposedness of the bidomain model by [Colli Franzone-Savaré] in case of linear anisotropies
(2) Formal matched asymptotics up to second order shows that we should expect an optimal error $\mathcal{O}(\varepsilon)$ between the zero-level of $u_{1}+u_{2}$ and anisotropic mean curvature flow
[Bellettini-Colli Franzone-P.]
(3) 「-convergence result for the stationary bidomain system, consistent with the formal asymptotics, but without a complete identification of the Γ-limit
[Ambrosio-Colli Franzone-Savaré]
(1) Wellposedness of the bidomain model by [Colli Franzone-Savaré] in case of linear anisotropies
(2) Formal matched asymptotics up to second order shows that we should expect an optimal error $\mathcal{O}(\varepsilon)$ between the zero-level of $u_{1}+u_{2}$ and anisotropic mean curvature flow
[Bellettini-Colli Franzone-P.]
(3) 「-convergence result for the stationary bidomain system, consistent with the formal asymptotics, but without a complete identification of the Γ-limit

> [Ambrosio-Colli Franzone-Savaré]
(9) Numerical simulations confirm the formal result.
[Pasquarelli, Bugatti]

Inverted anisotropic ratio, $d=2$

We make a linear choice for the anisotropies

$$
\left[\gamma_{i}(\xi)\right]^{2}=\xi^{T} A_{i} \xi, \quad T_{i}(\xi)=A_{i} \xi, \quad i=1,2
$$

For $\rho \geq 1$ we choose diagonal matrices A_{1}, A_{2} as (inverted anisotropic ratio):

$$
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & \rho
\end{array}\right], \quad A_{2}:=\left[\begin{array}{ll}
\rho & 0 \\
0 & 1
\end{array}\right]
$$

This choice is not physiologically feasible for
of the heart tissue, however it leads to a nonc
anisotropy if $\rho>3$.
Might correspond to a pathological situation.

Inverted anisotropic ratio, $d=2$

We make a linear choice for the anisotropies

$$
\left[\gamma_{i}(\xi)\right]^{2}=\xi^{T} A_{i} \xi, \quad T_{i}(\xi)=A_{i} \xi, \quad i=1,2
$$

For $\rho \geq 1$ we choose diagonal matrices A_{1}, A_{2} as (inverted anisotropic ratio):

$$
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & \rho
\end{array}\right], \quad A_{2}:=\left[\begin{array}{ll}
\rho & 0 \\
0 & 1
\end{array}\right] .
$$

This choice is not physiologically feasible for the bidomain model of the heart tissue, however it leads to a nonconvex combined anisotropy if $\rho>3$.
Might correspond to a pathological situation.

Numerical simulations. Two choices for ρ

Weak inverted ratio

$\rho=2$ (convex combined anisotropy)
Solid line: Frank diagram $\{\gamma(\xi)=1\}$. Dashed line: Wulff shape (dual shape).

Numerical simulations. Two choices for ρ

Weak inverted ratio

$\rho=2$ (convex combined anisotropy)
Solid line: Frank diagram $\{\gamma(\xi)=1\}$. Dashed line: Wulff shape (dual shape).

Strong inverted ratio

$\rho=5$ (nonconvex combined anisotropy)
Convexification of Frank diagram corresponds to cutting off the swallowtails in the Wulff shape.

Numerical simulations

In all simulations we chose a square domain $\Omega=(0,1.2) \times(0,1.2)$. The initial condition is such that $u_{1}+u_{2}=\tanh \frac{\tilde{\varphi}(x)}{\epsilon}$ for some appropriate choice of a norm $\tilde{\varphi}$.
The relaxation parameter ϵ related to space discretization h through $h=C \epsilon$ (C small enough to resolve the transition layer). Reflection conditions along the axes and Dirichet condition on the other two sides.
Matrices A_{1}, A_{2} are fixed according to the choice of weak or strong inverted ratio.

Discretization

- We use P_{1} finite elements in space.
- The first parabolic equations is discretized with explicit Euler in time to get the sum $u_{1}^{(n+1)}+u_{2}^{(n+1)}$ at the next time step.
- Then we recover $u_{1}^{(n+1)}$ and $u_{2}^{(n+1)}$ by solving an elliptic problem with a preconditioned conjugate gradient.

Weak inverted anisotropic ratio

By chosing $\rho=2$ we obtain a convex combined anisotropy.

Solid line: Frank diagram Dashed line: Wulff shape

Evolving the Wulff shape

The Wulff shape evolves selfsimilarly by anisotropic mean curvature
In all pictures we plot the zero-level curve of $u_{1}+u_{2}$ at different time steps.

Simulations with $\rho=2$

Starting from the Wulff shape, $\varepsilon=0.04, h=0.005$, time intervals of 0.1 :

Starting from the unit circle, $\varepsilon=0.08, h=0.01$, bidomain vs Allen-Cahn:

Strong inverted anisotropic ratio

By chosing $\rho=5$ we obtain a nonconvex combined anisotropy.

Solid line: Frank diagram Dashed line: Wulff shape

Interest in the evolution of those portions of the evolving front where the normal points in the concave parts of the Frank diagram.

Simulation with $\rho=5$

Starting from $p=1.5$ unit ball, $\varepsilon=0.008, h=0.002$:

[see animation.avi]

Simulation with $\rho=5 \varepsilon=0.004$

$\varepsilon=0.004, h=0.002$:

[see animation2.avi]

Simulation with $\rho=5 \varepsilon=0.004$ (2)

Subsequent times...

[see animation2.avi]

The wrinkling phenomenon and conclusions

- What we observe numerically (formation of wrinkles) is somewhat typical of an illposed evolution problem formally arising as gradient flow for an nonconvex energy when relaxed with a small higher order perturbation, or due to the discretization.
- The question is whether or not there is a "natural" way to describe the evolution in the singular limit $\varepsilon \rightarrow 0$ (or $h \rightarrow 0$).
- Surprisingly it seems that in most cases the limit is not the gradient flow by the convexified energy.
- This is not easily seen for the bidomain system due to the large wrinkles that arise even for quite small values of ε.

THANK YOU!

Bidomain system: elliptic/parabolic formulation

Recall:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{1}\left(\nabla u_{1}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0 \\
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{2}\left(\nabla u_{2}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0
\end{array}\right.
$$

Remark

We can substitute one of the two parabolic equations with the elliptic combination

$$
\operatorname{div} T_{1}\left(\nabla u_{1}\right)=\operatorname{div} T_{2}\left(\nabla u_{2}\right) \quad \text { in } \Omega
$$

The bidomain model is a degenerate parabolic system.

Vectorial formulation and Wellposedness

$$
\begin{aligned}
& \mathbf{u}=\left[u_{1}, u_{2}\right]^{T}, \quad \mathbf{q}=\left[T_{1}\left(\nabla u_{1}\right), T_{2}\left(\nabla u_{2}\right)\right]^{T} \\
& \varepsilon \partial_{t}(B \mathbf{u})-\varepsilon \operatorname{div} \mathbf{q}+\frac{1}{\varepsilon} \mathbf{f}(\mathbf{u})=0
\end{aligned}
$$

where

- $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \quad$ (singular!)
- div acts componentwise
- $\mathbf{f}(\mathbf{u})=\left[f\left(u_{1}+u_{2}\right), f\left(u_{1}+u_{2}\right)\right]^{T}$

Vectorial formulation and Wellposedness

$$
\begin{aligned}
& \mathbf{u}=\left[u_{1}, u_{2}\right]^{T}, \quad \mathbf{q}=\left[T_{1}\left(\nabla u_{1}\right), T_{2}\left(\nabla u_{2}\right)\right]^{T} \\
& \varepsilon \partial_{t}(B \mathbf{u})-\varepsilon \operatorname{div} \mathbf{q}+\frac{1}{\varepsilon} \mathbf{f}(\mathbf{u})=0
\end{aligned}
$$

where

- $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \quad$ (singular!)
- div acts componentwise
- $\mathbf{f}(\mathbf{u})=\left[f\left(u_{1}+u_{2}\right), f\left(u_{1}+u_{2}\right)\right]^{T}$

Although matrix B is singular the problem is well-posed, at least for linear anisotropies $T_{i}(\xi)=A_{i} \xi$ and any choice of two symmetric positive-definite matrices A_{1}, A_{2}.
[Colli Franzone-Savaré]

Gamma-limit of the stationary problem

[L. Ambrosio, P. Colli Franzone, G. Savaré ('00)]

In the linear case (α_{i} are quadratic forms), the functional

$$
\mathcal{F}_{\varepsilon}(\mathbf{u})=\varepsilon \int_{\Omega}\left[\alpha_{1}\left(\nabla u_{1}\right)+\alpha_{2}\left(\nabla u_{2}\right)\right] d x+\frac{1}{\varepsilon} \int_{\Omega} F\left(u_{1}+u_{2}\right) d x
$$

where $\mathbf{u}=\left[u_{1}, u_{2}\right]^{T}, \Gamma$-converges (in the L^{2} topology) to a limit functional

$$
\mathcal{F}(\mathbf{u})=\int_{S_{u}^{*}} \phi(\nu(x)) d \mathcal{H}^{d-1}(x)
$$

that depends only in the sum $u=u_{1}+u_{2}$ which is a $B V$ function taking values in $\{-1,1\}$ with S_{u}^{*} as its jump set and $\nu(x)$ the corresponding unit normal.

Identification of ϕ

Although the formal asymptotics suggests that

$$
\phi(\xi)=c_{0} \varphi^{o}(\xi)=c_{0} \sqrt{\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}}
$$

with c_{0} depending on the specific shape of F, the actual value on ϕ is not known yet. [Ambrosio et al] proved the following estimates

$$
\underline{\phi}(\xi) \leq \phi(\xi) \leq c_{0} \varphi^{\circ}(\xi)
$$

with (setting $\alpha_{i}(\xi)=\xi^{T} A_{i} \xi, A_{i}$ symmetric positive definite)

$$
\underline{\phi}(\xi)=\sqrt{\xi^{\top} A_{1}\left(A_{1}+A_{2}\right)^{-1} A_{2} \xi}
$$

