Anisotropic curvature flow as singular limit of the bidomain model

Maurizio Paolini (paolini@dmf.unicatt.it)
Università Cattolica di Brescia

Padova, april 2012
numerical simulations by Franco Pasquarelli, based on code by Meggie Bugatti, Università Cattolica di Brescia

Outline of the talk

- The Allen-Cahn equation
- Anisotropy and anisotropic Allen-Cahn
- The bidomain system
- Historical remarks
- Combined anisotropy and nonconvexity
- Numerical simulations in 2D

Allen-Cahn equation: brief review

Reaction/diffusion equation arising in the context of phase transitions with a diffused interface:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} u-\varepsilon \Delta u+\frac{1}{\varepsilon} f(u)=0 \quad \text { in } \Omega \\
+ \text { initial and boundary conditions }
\end{array}\right.
$$

Allen-Cahn equation: brief review

Reaction/diffusion equation arising in the context of phase transitions with a diffused interface:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} u-\varepsilon \Delta u+\frac{1}{\varepsilon} f(u)=0 \quad \text { in } \Omega \\
+ \text { initial and boundary conditions }
\end{array}\right.
$$

- u : order parameter (phase indicator),
- Ω : domain in $\mathbb{R}^{d}, d=2,3$,
- $\varepsilon>0$: small relaxation parameter,
- $f=F^{\prime}$: derivative of a double equal well potential F (or double-obstacle: deep
 quench limit [Elliott et al]).

Allen-Cahn equation: brief review

Reaction/diffusion equation arising in the context of phase transitions with a diffused interface:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} u-\varepsilon \Delta u+\frac{1}{\varepsilon} f(u)=0 \quad \text { in } \Omega \\
+ \text { initial and boundary conditions }
\end{array}\right.
$$

- u : order parameter (phase indicator),
- Ω : domain in $\mathbb{R}^{d}, d=2,3$,
- $\varepsilon>0$: small relaxation parameter,
- $f=F^{\prime}$: derivative of a double equal well potential F (or double-obstacle: deep
 quench limit [Elliott et al]).
The solution u exhibits a thin transition layer $\mathcal{O}(\varepsilon)$-wide between the phase $u \approx-1$ and the phase $u \approx+1$.

Allen-Cahn equation: brief review

Reaction/diffusion equation arising in the context of phase transitions with a diffused interface:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} u-\varepsilon \Delta u+\frac{1}{\varepsilon} f(u)=0 \quad \text { in } \Omega \\
+ \text { initial and boundary conditions }
\end{array}\right.
$$

- u : order parameter (phase indicator),
- Ω : domain in $\mathbb{R}^{d}, d=2,3$,
- $\varepsilon>0$: small relaxation parameter,
- $f=F^{\prime}$: derivative of a double equal well potential F (or double-obstacle: deep
 quench limit [Elliott et al]).
The solution u exhibits a thin transition layer $\mathcal{O}(\varepsilon)$-wide between the phase $u \approx-1$ and the phase $u \approx+1$.
Gradient flow of

$$
\frac{\epsilon}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{\epsilon} \int_{\Omega} F(u) d x \text {. }
$$

Singular limit $\varepsilon \rightarrow 0$

The transition layer approximates a sharp interface that moves by mean curvature:

$$
V=-\kappa
$$

[X. Chen, Bronsard-Kohn, Evans-Soner-Souganidis,] [Barles-Soner-Souganidis, ...]

Optimal $\mathcal{O}\left(\varepsilon^{2}\right)$ or quasi-optimal $\mathcal{O}\left(\varepsilon^{2}|\log \varepsilon|\right)$ error estimate.

Singular limit $\varepsilon \rightarrow 0$

The transition layer approximates a sharp interface that moves by mean curvature:

$$
V=-\kappa
$$

[X. Chen, Bronsard-Kohn, Evans-Soner-Souganidis,] [Barles-Soner-Souganidis, ...]

Optimal $\mathcal{O}\left(\varepsilon^{2}\right)$ or quasi-optimal $\mathcal{O}\left(\varepsilon^{2}|\log \varepsilon|\right)$ error estimate. [Nochetto-P.-Verdi, Nochetto-Verdi, Bellettini-P.]

Anisotropy

Described by a norm $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

- $\varphi(\xi) \geq 0 \quad \forall \xi \in \mathbb{R}^{d} ; \varphi(\xi)=0 \Longleftrightarrow \xi=0 ;$
- $\varphi(t \xi)=t \varphi(\xi) \quad \forall t \geq 0$;
- $\varphi(\xi+\eta) \leq \varphi(\xi)+\varphi(\eta)$.

Anisotropy

Described by a norm $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

- $\varphi(\xi) \geq 0 \quad \forall \xi \in \mathbb{R}^{d} ; \varphi(\xi)=0 \Longleftrightarrow \xi=0 ;$
- $\varphi(t \xi)=t \varphi(\xi) \quad \forall t \geq 0$;
- $\varphi(\xi+\eta) \leq \varphi(\xi)+\varphi(\eta)$.

Dual norm: $\varphi^{O}\left(\xi^{\star}\right)=\max _{\varphi(\xi) \leq 1} \xi \cdot \xi^{\star}$.

Anisotropy

Described by a norm $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$:

- $\varphi(\xi) \geq 0 \quad \forall \xi \in \mathbb{R}^{d} ; \varphi(\xi)=0 \Longleftrightarrow \xi=0 ;$
- $\varphi(t \xi)=t \varphi(\xi) \quad \forall t \geq 0$;
- $\varphi(\xi+\eta) \leq \varphi(\xi)+\varphi(\eta)$.

Dual norm: $\varphi^{o}\left(\xi^{\star}\right)=\max _{\varphi(\xi) \leq 1} \xi \cdot \xi^{\star}$.
Duality map (nonlinear, monotone, homogeneous of degree one):

$$
T(\xi)=\frac{1}{2} \nabla_{\xi}\left[\varphi^{\circ}(\xi)\right]^{2}
$$

[Wheeler-McFadden, Bellettini-P.]

Anisotropy (2)

Wulff shape: $W_{\varphi}=\{\varphi(\xi) \leq 1\}$;
Frank diagram: $F_{\varphi}=\left\{\varphi^{\circ}(\xi) \leq 1\right\}$;

$$
T: F_{\varphi} \rightarrow W_{\varphi}
$$

Anisotropy (2)

Wulff shape: $W_{\varphi}=\{\varphi(\xi) \leq 1\}$;
Frank diagram: $F_{\varphi}=\left\{\varphi^{\circ}(\xi) \leq 1\right\}$;

$$
T: F_{\varphi} \rightarrow W_{\varphi}
$$

Linear anisotropy

$$
\left[\varphi^{\circ}(\xi)\right]^{2}=\xi^{T} A \xi, \quad A \text { symmetric positive definite. }
$$

So that $[\varphi(\xi)]^{2}=\xi^{T} A^{-1} \xi$ and $T(\xi)=A \xi$.

Anisotropy (2)

Wulff shape: $W_{\varphi}=\{\varphi(\xi) \leq 1\}$;
Frank diagram: $F_{\varphi}=\left\{\varphi^{\circ}(\xi) \leq 1\right\}$;

$$
T: F_{\varphi} \rightarrow W_{\varphi}
$$

Linear anisotropy

$$
\left[\varphi^{\circ}(\xi)\right]^{2}=\xi^{T} A \xi, \quad A \text { symmetric positive definite. }
$$

So that $[\varphi(\xi)]^{2}=\xi^{T} A^{-1} \xi$ and $T(\xi)=A \xi$.

Strictly convex anisotropy

Both φ and φ° strictly convex.

Anisotropy (3)

Cristalline anisotropy
 W_{φ} is a convex polygon/polyhedron (and so is F_{φ}.)
 T is multivalued maximal monotone.

> [Taylor, Bellettini-Novaga-P.,...]

Anisotropy (3)

Cristalline anisotropy

W_{φ} is a convex polygon/polyhedron (and so is F_{φ}.)
T is multivalued maximal monotone.
[Taylor, Bellettini-Novaga-P.,...]
Nonconvex anisotropy
F_{φ} is not convex: illposedness

[Fierro-Goglione-P.,...]

Anisotropic Allen-Cahn

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} u-\varepsilon \operatorname{div} T(\nabla u)+\frac{1}{\varepsilon} f(u)=0 \quad \text { in } \Omega \\
+ \text { initial and boundary conditions }
\end{array}\right.
$$

Anisotropic Allen-Cahn

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t} u-\varepsilon \operatorname{div} T(\nabla u)+\frac{1}{\varepsilon} f(u)=0 \quad \text { in } \Omega \\
+ \text { initial and boundary conditions }
\end{array}\right.
$$

Singular limit $\varepsilon \rightarrow 0$

Geometric evolution $V \cdot \nu_{\varphi}=-\kappa_{\varphi} ; \kappa_{\varphi}=\operatorname{div} n_{\varphi}$;
Cahn-Hoffman vector: $n_{\varphi}=T\left(\nu_{\varphi}\right) ; \nu_{\varphi}=\frac{\nu}{\varphi^{\circ}(\nu)}$

[Elliott-Schätzle-P, Bellettini-Colli Franzone-P.] [Bellettini-Novaga]

The bidomain model is a singularly perturbed degenerate system of two reaction-diffusion equations in the unknowns u_{1} and $\mu_{2}: \Omega \rightarrow \mathbb{R}$:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{1}\left(\nabla u_{1}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0 \\
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{2}\left(\nabla u_{2}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0
\end{array}\right.
$$

in $\Omega \in \mathbb{R}^{d}$ with appropriate initial and boundary conditions. $T_{1,2}$ are the duality mappings of two strictly convex anisotropies $\varphi_{1,2}$, $f=F^{\prime}$ is the derivative of the quartic double-well potential $F(s)=\left(s^{2}-1\right)^{2}, \varepsilon>0$ is a small relaxation parameter.

The bidomain model is a singularly perturbed degenerate system of two reaction-diffusion equations in the unknowns u_{1} and $u_{2}: \Omega \rightarrow \mathbb{R}$:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{1}\left(\nabla u_{1}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0 \\
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{2}\left(\nabla u_{2}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0
\end{array}\right.
$$

in $\Omega \in \mathbb{R}^{d}$ with appropriate initial and boundary conditions. $T_{1,2}$ are the duality mappings of two strictly convex anisotropies $\varphi_{1,2}$, $f=F^{\prime}$ is the derivative of the quartic double-well potential $F(s)=\left(s^{2}-1\right)^{2}, \varepsilon>0$ is a small relaxation parameter. It can be generalized to more components u_{1}, \ldots, u_{m}.

Origin: electric model for the myocardium

[Colli Franzone, ...]

- Simulation of a complete heart-beat, but specifically of the depolarization phase;

Origin: electric model for the myocardium

[Colli Franzone, ...]

- Simulation of a complete heart-beat, but specifically of the depolarization phase;
- starting from a microscopic model of the electrical properties of the (disjoint) intracellular and extracellular media Ω^{i} and Ω^{e} in the cardiac tissue
- coupled through the cellular membrane;

Origin: electric model for the myocardium

[Colli Franzone, ...]

- Simulation of a complete heart-beat, but specifically of the depolarization phase;
- starting from a microscopic model of the electrical properties of the (disjoint) intracellular and extracellular media Ω^{i} and Ω^{e} in the cardiac tissue
- coupled through the cellular membrane;
- with the addition of a number of "gating variables" (Hodgkin-Huxley model), simplified to a single "recovery variable" (FitzHugh-Nagumo);
- the recovery variable (which we shall neglect) allows to recover the rest state of the cell (repolarization);

Origin: electric model for the myocardium

[Colli Franzone, ...]

- Simulation of a complete heart-beat, but specifically of the depolarization phase;
- starting from a microscopic model of the electrical properties of the (disjoint) intracellular and extracellular media Ω^{i} and Ω^{e} in the cardiac tissue
- coupled through the cellular membrane;
- with the addition of a number of "gating variables" (Hodgkin-Huxley model), simplified to a single "recovery variable" (FitzHugh-Nagumo);
- the recovery variable (which we shall neglect) allows to recover the rest state of the cell (repolarization);
- u^{i}, u^{e} : intra-cellular and extra-cellular potentials;
- $u=u^{i}-u^{e}$: transmembrane potential.

Origin: electric model for the myocardium (2)

- The bidomain model derives from a homogeneization process so that in the end $\Omega^{i}=\Omega^{e}=\Omega$ are superposed and the macroscopic potentials u^{i} and u^{e} are defined in the same domain.

$$
\begin{gathered}
\left\{\begin{array}{c}
\partial_{t} u-\varepsilon \operatorname{div} M^{i} \nabla u^{i}+\frac{1}{\varepsilon} f(u)=0 \\
\partial_{t} u+\varepsilon \operatorname{div} M^{e} \nabla u^{e}+\frac{1}{\varepsilon} f(u)=0 \\
u_{1}=u^{i} ; \quad u_{2}=-u^{e} \\
T_{1,2}(\xi)=M^{i, e} \xi
\end{array}, .\right.
\end{gathered}
$$

- Cells form elongated fibers with orientation that depends strongly on position, and this geometry is the source of the anisotrony: $M^{i}, M^{e}:$ symmetric positive definite matrices modelling the anisotropy induced by the cell orientations

Origin: electric model for the myocardium (2)

- The bidomain model derives from a homogeneization process so that in the end $\Omega^{i}=\Omega^{e}=\Omega$ are superposed and the macroscopic potentials u^{i} and u^{e} are defined in the same domain.

$$
\begin{gathered}
\left\{\begin{array}{c}
\partial_{t} u-\varepsilon \operatorname{div} M^{i} \nabla u^{i}+\frac{1}{\varepsilon} f(u)=0 \\
\partial_{t} u+\varepsilon \operatorname{div} M^{e} \nabla u^{e}+\frac{1}{\varepsilon} f(u)=0 \\
u_{1}=u^{i} ; \quad u_{2}=-u^{e} \\
T_{1,2}(\xi)=M^{i, e} \xi
\end{array}\right.
\end{gathered}
$$

- Cells form elongated fibers with orientation that depends strongly on position, and this geometry is the source of the anisotropy;
- M^{i}, M^{e} : symmetric positive definite matrices modelling the anisotropy induced by the cell orientations.

Origin: electric model for the myocardium (3)

Remarks on the bidomain model:
(1) the two local minima of F are different;
(2) rescaled time: $\partial_{t} u$ instead of $\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)$;
(3) presence of a (pointwise) recovery variable;
(9) space dependant anisotropy $M^{i, e}=M^{i, e}(x)$ (Finsler metric).

Origin: electric model for the myocardium (3)

Remarks on the bidomain model:
(1) the two local minima of F are different;
(2) rescaled time: $\partial_{t} u$ instead of $\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)$;
(3) presence of a (pointwise) recovery variable;
(9) space dependant anisotropy $M^{i, e}=M^{i, e}(x)$ (Finsler metric).

- Complex 3D geometry
- Relaxation parameter $\varepsilon \approx 1 \mathrm{~cm}$: not that small!

The anisotropy in the bidomain model

Recall:

$$
\left\{\begin{array}{l}
\partial_{t}\left(u^{i}-u^{e}\right)-\varepsilon \operatorname{div} M^{i} \nabla u^{i}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0 \\
\partial_{t}\left(u^{i}-u^{e}\right)+\varepsilon \operatorname{div} M^{e} \nabla u^{e}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0
\end{array}\right.
$$

Matrices M^{i} and M^{e} (in general depending on position) are symmetric positive definite with common eigenvectors consistent with fiber orientation. The eigenvalues $\lambda_{k}^{i}, \lambda_{k}^{e}, k=1,2,3$ come from the homogeneization procedure of the microscopic geometry and depend on properties of the intra and extra-cellular media.

The anisotropy in the bidomain model

Recall:

$$
\left\{\begin{array}{l}
\partial_{t}\left(u^{i}-u^{e}\right)-\varepsilon \operatorname{div} M^{i} \nabla u^{i}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0 \\
\partial_{t}\left(u^{i}-u^{e}\right)+\varepsilon \operatorname{div} M^{e} \nabla u^{e}+\frac{1}{\varepsilon} f\left(u^{i}-u^{e}\right)=0
\end{array}\right.
$$

Matrices M^{i} and M^{e} (in general depending on position) are symmetric positive definite with common eigenvectors consistent with fiber orientation. The eigenvalues $\lambda_{k}^{i}, \lambda_{k}^{e}, k=1,2,3$ come from the homogeneization procedure of the microscopic geometry and depend on properties of the intra and extra-cellular media.

Special case $M^{e}=\rho M^{i}$ (equal anisotropic ratio) the system reduces to a single reaction-diffusion Allen-Cahn equation for $u=u^{i}-u^{e}$
However equal anisotropic ratio is not physiologically feasible.

Bidomain system: elliptic/parabolic formulation

Recall:

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{1}\left(\nabla u_{1}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0 \\
\varepsilon \partial_{t}\left(u_{1}+u_{2}\right)-\varepsilon \operatorname{div} T_{2}\left(\nabla u_{2}\right)+\frac{1}{\varepsilon} f\left(u_{1}+u_{2}\right)=0
\end{array}\right.
$$

Remark

We can substitute one of the two parabolic equations with the elliptic combination

$$
\operatorname{div} T_{1}\left(\nabla u_{1}\right)=\operatorname{div} T_{2}\left(\nabla u_{2}\right) \quad \text { in } \Omega
$$

The bidomain model is a degenerate parabolic system.

Vectorial formulation and Wellposedness

$$
\begin{aligned}
& \mathbf{u}=\left[u_{1}, u_{2}\right]^{T}, \quad \mathbf{q}=\left[T_{1}\left(\nabla u_{1}\right), T_{2}\left(\nabla u_{2}\right)\right]^{T} \\
& \varepsilon \partial_{t}(B \mathbf{u})-\varepsilon \operatorname{div} \mathbf{q}+\frac{1}{\varepsilon} \mathbf{f}(\mathbf{u})=0
\end{aligned}
$$

where

- $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \quad$ (singular!);
- div acts componentwise
- $\mathbf{f}(\mathbf{u})=\left[f\left(u_{1}+u_{2}\right), f\left(u_{1}+u_{2}\right)\right]^{T}$

Vectorial formulation and Wellposedness

$$
\begin{aligned}
& \mathbf{u}=\left[u_{1}, u_{2}\right]^{T}, \quad \mathbf{q}=\left[T_{1}\left(\nabla u_{1}\right), T_{2}\left(\nabla u_{2}\right)\right]^{T} \\
& \varepsilon \partial_{t}(B \mathbf{u})-\varepsilon \operatorname{div} \mathbf{q}+\frac{1}{\varepsilon} \mathbf{f}(\mathbf{u})=0
\end{aligned}
$$

where

- $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \quad$ (singular!);
- div acts componentwise
- $\mathbf{f}(\mathbf{u})=\left[f\left(u_{1}+u_{2}\right), f\left(u_{1}+u_{2}\right)\right]^{T}$

Although matrix B is singular the problem is well-posed, at least for linear anisotropies $T_{i}(\xi)=A_{i} \xi$ and any choice of two symmetric positive-definite matrices A_{1}, A_{2}.
[Colli Franzone-Savaré]

The combined anisotropy
For convenience we introduce $\alpha_{i}(\xi)=\left[\varphi_{i}^{\circ}(\xi)\right]^{2}, \quad i=1,2$.
(For the bidomain model they are $\alpha^{i, e}=\xi^{T} M^{i, e} \xi$.)

- Strictly convex anisotropies (even linear) can produce a nonconvex combined anisotropy (using φ° is an abuse of

The combined anisotropy
For convenience we introduce $\alpha_{i}(\xi)=\left[\varphi_{i}^{o}(\xi)\right]^{2}, \quad i=1,2$.
(For the bidomain model they are $\alpha^{i, e}=\xi^{T} M^{i, e} \xi$.)
The combined value α is their harmonic mean:

$$
\alpha=\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}
$$

The combined anisotropy
For convenience we introduce $\alpha_{i}(\xi)=\left[\varphi_{i}^{\circ}(\xi)\right]^{2}, \quad i=1,2$.
(For the bidomain model they are $\alpha^{i, e}=\xi^{T} M^{i, e} \xi$.)
The combined value α is their harmonic mean:

$$
\alpha=\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}
$$

The combined anisotropy is defined as

$$
\varphi^{\circ}(\xi)=\sqrt{\alpha}=\sqrt{\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}}
$$

(1) Linear anisotropies generally produce a nonlinear combined
(2) Strictly convex anisotropies (even linear) can produce a nonconvex combined anisotropy (using φ° is an abuse of

The combined anisotropy

For convenience we introduce $\alpha_{i}(\xi)=\left[\varphi_{i}^{\circ}(\xi)\right]^{2}, \quad i=1,2$.
(For the bidomain model they are $\alpha^{i, e}=\xi^{T} M^{i, e} \xi$.)
The combined value α is their harmonic mean:

$$
\alpha=\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}
$$

The combined anisotropy is defined as

$$
\varphi^{\circ}(\xi)=\sqrt{\alpha}=\sqrt{\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}}
$$

Remarks

(1) Linear anisotropies generally produce a nonlinear combined anisotropy;

The combined anisotropy

For convenience we introduce $\alpha_{i}(\xi)=\left[\varphi_{i}^{\circ}(\xi)\right]^{2}, \quad i=1,2$.
(For the bidomain model they are $\alpha^{i, e}=\xi^{T} M^{i, e} \xi$.)
The combined value α is their harmonic mean:

$$
\alpha=\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}
$$

The combined anisotropy is defined as

$$
\varphi^{\circ}(\xi)=\sqrt{\alpha}=\sqrt{\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}}
$$

Remarks

(1) Linear anisotropies generally produce a nonlinear combined anisotropy;
(2) Strictly convex anisotropies (even linear) can produce a nonconvex combined anisotropy (using φ° is an abuse of notation in this case).

The singular limit $\varepsilon \rightarrow 0$
Formal matched asymptotics suggest that (for a convex combined anisotropy) the sum $u_{1}+u_{2}$ (the transmembrane potential) develops a thin $\mathcal{O}(\varepsilon)$-wide transition region that moves by φ-anisotropic mean curvature flow with velocity

$$
V \cdot \nu_{\varphi}=-\kappa_{\varphi}+\mathcal{O}(\varepsilon)
$$

where φ denotes the (dual of the) combined anisotropy.

The singular limit $\varepsilon \rightarrow 0$

Formal matched asymptotics suggest that (for a convex combined anisotropy) the sum $u_{1}+u_{2}$ (the transmembrane potential) develops a thin $\mathcal{O}(\varepsilon)$-wide transition region that moves by φ-anisotropic mean curvature flow with velocity

$$
V \cdot \nu_{\varphi}=-\kappa_{\varphi}+\mathcal{O}(\varepsilon)
$$

where φ denotes the (dual of the) combined anisotropy.

Anisotropic mean curvature flow

φ^{0} is not guaranteed to be convex. If it is, then it is a norm and we have anisotropic curvature flow.

The singular limit $\varepsilon \rightarrow 0$

Formal matched asymptotics suggest that (for a convex combined anisotropy) the sum $u_{1}+u_{2}$ (the transmembrane potential) develops a thin $\mathcal{O}(\varepsilon)$-wide transition region that moves by φ-anisotropic mean curvature flow with velocity

$$
V \cdot \nu_{\varphi}=-\kappa_{\varphi}+\mathcal{O}(\varepsilon)
$$

where φ denotes the (dual of the) combined anisotropy.

Anisotropic mean curvature flow

φ^{0} is not guaranteed to be convex. If it is, then it is a norm and we have anisotropic curvature flow.

Asymptotic Allen-Cahn approximation

The bidomain system behaves (formally) like the anisotropic Allen-Cahn equation (with this particular choice of the anisotropy) as $\epsilon \rightarrow 0$.

Convergence results

Very few...
(1) Formal matched asymptotics up to second order shows that an optimal error $\mathcal{O}(\varepsilon)$ between the zero-level of $u_{1}+u_{2}$ and anisotropic mean curvature flow should be expected.
[Bellettini-Colli Franzone-P.]
(2) -convergence result for the stationary bidomain system consistent with the formal asymptotics, but without a complete identification of the 「-limit
(3) Numerical simulations confirm the formal result

Convergence results

Very few...
(1) Formal matched asymptotics up to second order shows that an optimal error $\mathcal{O}(\varepsilon)$ between the zero-level of $u_{1}+u_{2}$ and anisotropic mean curvature flow should be expected.
[Bellettini-Colli Franzone-P.]
(2) 「-convergence result for the stationary bidomain system, consistent with the formal asymptotics, but without a complete identification of the Γ-limit.
[Ambrosio-Colli Franzone-Savaré]

Convergence results

Very few...
(1) Formal matched asymptotics up to second order shows that an optimal error $\mathcal{O}(\varepsilon)$ between the zero-level of $u_{1}+u_{2}$ and anisotropic mean curvature flow should be expected.
[Bellettini-Colli Franzone-P.]
(2) 「-convergence result for the stationary bidomain system, consistent with the formal asymptotics, but without a complete identification of the Γ-limit.
[Ambrosio-Colli Franzone-Savaré]
(3) Numerical simulations confirm the formal result.
[Pasquarelli, Bugatti]

Gamma-limit of the stationary problem

[L. Ambrosio, P. Colli Franzone, G. Savaré ('00)]

In the linear case (α_{i} are quadratic forms), the functional

$$
\mathcal{F}_{\varepsilon}(\mathbf{u})=\varepsilon \int_{\Omega}\left[\alpha_{1}\left(\nabla u_{1}\right)+\alpha_{2}\left(\nabla u_{2}\right)\right] d x+\frac{1}{\varepsilon} \int_{\Omega} F\left(u_{1}+u_{2}\right) d x
$$

where $\mathbf{u}=\left[u_{1}, u_{2}\right]^{T}, \Gamma$-converges (in the L^{2} topology) to a limit functional

$$
\mathcal{F}(\mathbf{u})=\int_{S_{u}^{*}} \phi(\nu(x)) d \mathcal{H}^{d-1}(x)
$$

that depends only in the sum $u=u_{1}+u_{2}$ which is a $B V$ function taking values in $\{-1,1\}$ with S_{u}^{*} as its jump set and $\nu(x)$ the corresponding unit normal.

Identification of ϕ

Although the formal asymptotics suggests that

$$
\phi(\xi)=c_{0} \varphi^{o}(\xi)=c_{0} \sqrt{\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}}
$$

with c_{0} depending on the specific shape of F, the actual value on ϕ is not known yet. [Ambrosio et al] proved the following estimates

$$
\underline{\phi}(\xi) \leq \phi(\xi) \leq c_{0} \varphi^{\circ}(\xi)
$$

with (setting $\alpha_{i}(\xi)=\xi^{T} A_{i} \xi, A_{i}$ symmetric positive definite)

$$
\underline{\phi}(\xi)=\sqrt{\xi^{\top} A_{1}\left(A_{1}+A_{2}\right)^{-1} A_{2} \xi}
$$

Inverted anisotropic ratio, $d=2$

We make a linear choice for the anisotropy:

$$
\left[\varphi_{i}^{o}(\xi)\right]^{2}=\xi^{T} A_{i} \xi, \quad T_{i}(\xi)=A_{i} \xi, \quad i=1,2
$$

For $\rho \geq 1$ we choose diagonal matrices A_{1}, A_{2} as (inverted anisotropic ratio):

$$
A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & \rho
\end{array}\right], \quad A_{2}:=\left[\begin{array}{ll}
\rho & 0 \\
0 & 1
\end{array}\right] .
$$

This choice is not physiologically feasible for the bidomain model of the heart tissue, however it leads to a nonconvex combined anisotropy if $\rho>3$.
Might correspond to a pathological situation.

Numerical simulations. Two choices for ρ

Weak inverted ratio

$\rho=2$ (convex anisotropy)
Solid line: Frank diagram $\left\{\varphi^{\circ}(\xi)=1\right\}$. Dashed line: Wulff shape (dual shape).

Numerical simulations. Two choices for ρ

Weak inverted ratio

$\rho=2$ (convex anisotropy)
Solid line: Frank diagram $\left\{\varphi^{\circ}(\xi)=1\right\}$. Dashed line: Wulff shape (dual shape).

Strong inverted ratio

$\rho=5$ (nonconvex anisotropy)
Convexification of Frank diagram corresponds to cutting off the swallowtails in the Wulff shape.

Numerical simulations

In all simulations we chose a square domain $\Omega=(0,1.2) \times(0,1.2)$. The initial condition is such that $u_{1}+u_{2}=\tanh \frac{\tilde{\varphi}(x)}{\epsilon}$ for some appropriate choice of a norm $\tilde{\varphi}$.
The relaxation parameter ϵ related to space discretization h through $h=C \epsilon$ (C small enough to resolve the transition layer). Reflection conditions along the axes and Dirichet condition on the other two sides.
Matrices A_{1}, A_{2} are fixed according to the choice of weak or strong inverted ratio.

Discretization

- We use P_{1} finite elements in space.
- The first parabolic equations is discretized with explicit Euler in time to get the sum $u_{1}^{(n+1)}+u_{2}^{(n+1)}$ at the next time step.
- Then we recover $u_{1}^{(n+1)}$ and $u_{2}^{(n+1)}$ by solving an elliptic problem with a preconditioned conjugate gradient.

Weak inverted anisotropic ratio

By chosing $\rho=2$ we obtain a convex combined anisotropy.

Solid line: Frank diagram
Dashed line: Wulff shape

Evolving the Wulff shape

The Wulff shape evolves selfsimilarly by anisotropic mean curvature
In all pictures we plot the zero-level curve of $u_{1}+u_{2}$ at different time steps.

Simulations with $\rho=2$

Starting from the Wulff shape, $\varepsilon=0.04, h=0.005$, time intervals of 0.1 :

Starting from the unit circle, $\varepsilon=0.08, h=0.01$, bidomain vs Allen-Cahn:

Strong inverted anisotropic ratio

By chosing $\rho=5$ we obtain a nonconvex combined anisotropy.

Solid line: Frank diagram Dashed line: Wulff shape

Interest in the evolution of those portions of the evolving front where the normal points in the nonconvex parts of the Frank diagram.

Simulation with $\rho=5$

Starting from $p=1.5$ unit ball, $\varepsilon=0.008, h=0.002$:

[see animation.avi]

Simulation with $\rho=5 \varepsilon=0.004$

$\varepsilon=0.004, h=0.002$:

[see animation2.avi]

Simulation with $\rho=5 \varepsilon=0.004$ (2)

Subsequent times...

[see animation2.avi]

The wrinkling phenomenon and conclusions

- What we observe numerically (formation of wrinkles) is somewhat typical of an illposed evolution problem formally arising as gradient flow for an energy that is not convex when relaxed with the addition of a small higher order perturbation, or due to the discretization.
- The question is whether or not there is a "natural" way to describe the evolution in the singular limit $\varepsilon \rightarrow 0$ (or $h \rightarrow 0$).
- Surprisingly it seems that in most cases the limit is not the gradient flow by the convexified energy.
- This is not easily seen for the bidomain system due to the large wrinkles that arise even for quite small values of ε.

