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Allen-Cahn equation: brief review

Reaction/diffusion equation arising in the context of phase
transitions with a diffused interface:{

ε∂tu − ε∆u + 1
ε f (u) = 0 in Ω

+ initial and boundary conditions

u: order parameter (phase indicator),

Ω: domain in Rd , d = 2, 3,

ε > 0: small relaxation parameter,

f = F ′: derivative of a double equal well
potential F (or double-obstacle: deep
quench limit [Elliott et al]).

F

−1 1

The solution u exhibits a thin transition layer O(ε)-wide between
the phase u ≈ −1 and the phase u ≈ +1.

Gradient flow of ε
2

∫
Ω |∇u|

2 dx + 1
ε

∫
Ω F (u)dx .
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Singular limit ε→ 0

The transition layer approximates a sharp interface that moves by
mean curvature:

V = −κ

[X. Chen, Bronsard-Kohn, Evans-Soner-Souganidis,]
[Barles-Soner-Souganidis, ...]

Optimal O(ε2) or quasi-optimal O(ε2| log ε|) error estimate.
[Nochetto-P.-Verdi, Nochetto-Verdi, Bellettini-P.]
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Anisotropy

Described by a norm ϕ : Rd → R:

ϕ(ξ) ≥ 0 ∀ξ ∈ Rd ; ϕ(ξ) = 0 ⇐⇒ ξ = 0;

ϕ(tξ) = tϕ(ξ) ∀t ≥ 0;

ϕ(ξ + η) ≤ ϕ(ξ) + ϕ(η).

Dual norm: ϕo(ξ?) = max
ϕ(ξ)≤1

ξ · ξ?.

Duality map (nonlinear, monotone, homogeneous of degree one):

T (ξ) =
1

2
∇ξ [ϕo(ξ)]2

[Wheeler-McFadden, Bellettini-P.]
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Anisotropy (2)

Wulff shape: Wϕ = {ϕ(ξ) ≤ 1};
Frank diagram: Fϕ = {ϕo(ξ) ≤ 1};

T : Fϕ →Wϕ

Linear anisotropy

[ϕo(ξ)]2 = ξTAξ, A symmetric positive definite.

So that [ϕ(ξ)]2 = ξTA−1ξ and T (ξ) = Aξ.

Strictly convex anisotropy

Both ϕ and ϕo strictly convex.
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Anisotropy (3)

Cristalline anisotropy

Wϕ is a convex polygon/polyhedron (and so is Fϕ.)
T is multivalued maximal monotone.

[Taylor, Bellettini-Novaga-P.,...]

Nonconvex anisotropy

Fϕ is not convex: illposedness

[Fierro-Goglione-P.,...]
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Anisotropic Allen-Cahn

{
ε∂tu − ε div T (∇u) + 1

ε f (u) = 0 in Ω

+ initial and boundary conditions

Singular limit ε→ 0

Geometric evolution V · νϕ = −κϕ; κϕ = div nϕ;
Cahn-Hoffman vector: nϕ = T (νϕ); νϕ = ν

ϕo(ν)

[Elliott-Schätzle-P, Bellettini-Colli Franzone-P.]
[Bellettini-Novaga]
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The bidomain system

The bidomain model is a singularly perturbed degenerate system of
two reaction–diffusion equations in the unknowns u1 and
u2 : Ω→ R:{

ε∂t(u1 + u2)− ε divT1(∇u1) + 1
ε f (u1 + u2) = 0

ε∂t(u1 + u2)− ε divT2(∇u2) + 1
ε f (u1 + u2) = 0

in Ω ∈ Rd with appropriate initial and boundary conditions. T1,2

are the duality mappings of two strictly convex anisotropies ϕ1,2,
f = F ′ is the derivative of the quartic double-well potential
F (s) = (s2 − 1)2, ε > 0 is a small relaxation parameter.
It can be generalized to more components u1, . . . , um.
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Origin: electric model for the myocardium

[Colli Franzone, ...]

Simulation of a complete heart-beat, but specifically of the
depolarization phase;

starting from a microscopic model of the electrical properties
of the (disjoint) intracellular and extracellular media Ωi and
Ωe in the cardiac tissue

coupled through the cellular membrane;

with the addition of a number of “gating variables”
(Hodgkin–Huxley model), simplified to a single “recovery
variable” (FitzHugh–Nagumo);

the recovery variable (which we shall neglect) allows to
recover the rest state of the cell (repolarization);

ui ,ue : intra–cellular and extra–cellular potentials;

u = ui − ue : transmembrane potential.
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Origin: electric model for the myocardium (2)

The bidomain model derives from a homogeneization
process so that in the end Ωi = Ωe = Ω are superposed and
the macroscopic potentials ui and ue are defined in the same
domain.{
∂tu − ε divM i∇ui + 1

ε f (u) = 0

∂tu + ε divMe∇ue + 1
ε f (u) = 0

u1 = ui ; u2 = −ue

T1,2(ξ) = M i ,eξ

F

Cells form elongated fibers with orientation that depends
strongly on position, and this geometry is the source of the
anisotropy;

M i ,Me : symmetric positive definite matrices modelling the
anisotropy induced by the cell orientations.
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Origin: electric model for the myocardium (3)

Remarks on the bidomain model:

1 the two local minima of F are different;

2 rescaled time: ∂tu instead of ε∂t(u1 + u2);

3 presence of a (pointwise) recovery variable;

4 space dependant anisotropy M i ,e = M i ,e(x) (Finsler metric).

Complex 3D geometry

Relaxation parameter ε ≈ 1cm: not that small!
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The anisotropy in the bidomain model

Recall: {
∂t(u

i − ue)− ε divM i∇ui + 1
ε f (ui − ue) = 0

∂t(u
i − ue) + ε divMe∇ue + 1

ε f (ui − ue) = 0

Matrices M i and Me (in general depending on position) are
symmetric positive definite with common eigenvectors consistent
with fiber orientation. The eigenvalues λik , λek , k = 1, 2, 3 come
from the homogeneization procedure of the microscopic geometry
and depend on properties of the intra and extra–cellular media.

Special case Me = ρM i (equal anisotropic ratio) the system
reduces to a single reaction–diffusion Allen-Cahn equation for
u = ui − ue

However equal anisotropic ratio is not physiologically feasible.
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Bidomain system: elliptic/parabolic formulation

Recall:{
ε∂t(u1 + u2)− ε divT1(∇u1) + 1

ε f (u1 + u2) = 0

ε∂t(u1 + u2)− ε divT2(∇u2) + 1
ε f (u1 + u2) = 0

Remark

We can substitute one of the two parabolic equations with the
elliptic combination

divT1(∇u1) = divT2(∇u2) in Ω.

The bidomain model is a degenerate parabolic system.
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Vectorial formulation and Wellposedness

u = [u1, u2]T , q = [T1(∇u1),T2(∇u2)]T

ε∂t(Bu)− ε div q +
1

ε
f(u) = 0

where

B =

[
1 1
1 1

]
(singular!);

div acts componentwise

f(u) = [f (u1 + u2), f (u1 + u2)]T

Although matrix B is singular the problem is well-posed, at least
for linear anisotropies Ti (ξ) = Aiξ and any choice of two
symmetric positive–definite matrices A1, A2.

[Colli Franzone-Savaré]
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The combined anisotropy

For convenience we introduce αi (ξ) = [ϕo
i (ξ)]2, i = 1, 2.

(For the bidomain model they are αi ,e = ξTM i ,eξ.)
The combined value α is their harmonic mean:

α =
α1α2

α1 + α2

The combined anisotropy is defined as

ϕo(ξ) =
√
α =

√
α1α2

α1 + α2

Remarks

1 Linear anisotropies generally produce a nonlinear combined
anisotropy;

2 Strictly convex anisotropies (even linear) can produce a
nonconvex combined anisotropy (using ϕo is an abuse of
notation in this case).
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The singular limit ε→ 0

Formal matched asymptotics suggest that (for a convex combined
anisotropy) the sum u1 + u2 (the transmembrane potential)
develops a thin O(ε)–wide transition region that moves by
ϕ-anisotropic mean curvature flow with velocity

V · νϕ = −κϕ +O(ε)

where ϕ denotes the (dual of the) combined anisotropy.

Anisotropic mean curvature flow

ϕo is not guaranteed to be convex. If it is, then it is a norm and
we have anisotropic curvature flow.

Asymptotic Allen-Cahn approximation

The bidomain system behaves (formally) like the anisotropic
Allen-Cahn equation (with this particular choice of the anisotropy)
as ε→ 0.
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Convergence results

Very few...

1 Formal matched asymptotics up to second order shows that
an optimal error O(ε) between the zero-level of
u1+u2 and anisotropic mean curvature flow should be expected.

[Bellettini-Colli Franzone-P.]

2 Γ-convergence result for the stationary bidomain system,
consistent with the formal asymptotics, but without a
complete identification of the Γ-limit.

[Ambrosio-Colli Franzone-Savaré]

3 Numerical simulations confirm the formal result.
[Pasquarelli, Bugatti]
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Gamma-limit of the stationary problem

[L. Ambrosio, P. Colli Franzone, G. Savaré (’00)]
In the linear case (αi are quadratic forms), the functional

Fε(u) = ε

∫
Ω

[α1(∇u1) + α2(∇u2)] dx +
1

ε

∫
Ω
F (u1 + u2) dx

where u = [u1, u2]T , Γ-converges (in the L2 topology) to a limit
functional

F(u) =

∫
S∗
u

φ(ν(x)) dHd−1(x)

that depends only in the sum u = u1 + u2 which is a BV function
taking values in {−1, 1} with S∗u as its jump set and ν(x) the
corresponding unit normal.
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Identification of φ

Although the formal asymptotics suggests that

φ(ξ) = c0ϕ
o(ξ) = c0

√
α1α2

α1 + α2

with c0 depending on the specific shape of F , the actual value on
φ is not known yet. [Ambrosio et al] proved the following estimates

φ(ξ) ≤ φ(ξ) ≤ c0ϕ
o(ξ)

with (setting αi (ξ) = ξTAiξ, Ai symmetric positive definite)

φ(ξ) =
√
ξTA1(A1 + A2)−1A2ξ
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Inverted anisotropic ratio, d = 2

We make a linear choice for the anisotropy:

[ϕo
i (ξ)]2 = ξTAiξ, Ti (ξ) = Aiξ, i = 1, 2.

For ρ ≥ 1 we choose diagonal matrices A1, A2 as (inverted
anisotropic ratio):

A1 =

[
1 0
0 ρ

]
, A2 :=

[
ρ 0
0 1

]
.

This choice is not physiologically feasible for the bidomain model
of the heart tissue, however it leads to a nonconvex combined
anisotropy if ρ > 3.
Might correspond to a pathological situation.
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Numerical simulations. Two choices for ρ

Weak inverted ratio

ρ = 2 (convex anisotropy)

Solid line: Frank diagram {ϕo(ξ) = 1}.
Dashed line: Wulff shape (dual shape).

Strong inverted ratio

ρ = 5 (nonconvex anisotropy)

Convexification of Frank diagram corresponds
to cutting off the swallowtails in the Wulff
shape.
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Numerical simulations

In all simulations we chose a square domain Ω = (0, 1.2)× (0, 1.2).

The initial condition is such that u1 + u2 = tanh ϕ̃(x)
ε for some

appropriate choice of a norm ϕ̃.
The relaxation parameter ε related to space discretization h
through h = Cε (C small enough to resolve the transition layer).
Reflection conditions along the axes and Dirichet condition on the
other two sides.
Matrices A1, A2 are fixed according to the choice of weak or strong
inverted ratio.
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Discretization

We use P1 finite elements in space.

The first parabolic equations is discretized with explicit Euler

in time to get the sum u
(n+1)
1 + u

(n+1)
2 at the next time step.

Then we recover u
(n+1)
1 and u

(n+1)
2 by solving an elliptic

problem with a preconditioned conjugate gradient.
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Weak inverted anisotropic ratio

By chosing ρ = 2 we obtain a convex combined anisotropy.

Solid line: Frank diagram
Dashed line: Wulff shape

Evolving the Wulff shape

The Wulff shape evolves selfsimilarly by anisotropic mean curvature

In all pictures we plot the zero-level curve of u1 + u2 at different
time steps.
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Simulations with ρ = 2

Starting from the Wulff shape, ε = 0.04, h = 0.005, time intervals of 0.1:
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Comparison at t=0.3000

Starting from the unit circle, ε = 0.08, h = 0.01, bidomain vs Allen-Cahn:
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Strong inverted anisotropic ratio

By chosing ρ = 5 we obtain a nonconvex combined anisotropy.

Solid line: Frank diagram
Dashed line: Wulff shape

Interest in the evolution of those portions of the evolving front
where the normal points in the nonconvex parts of the Frank
diagram.
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Simulation with ρ = 5

Starting from p = 1.5 unit ball, ε = 0.008, h = 0.002:
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[see animation.avi]
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Simulation with ρ = 5 ε = 0.004

ε = 0.004, h = 0.002:
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[see animation2.avi]
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Simulation with ρ = 5 ε = 0.004 (2)

Subsequent times...
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[see animation2.avi]
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The wrinkling phenomenon and conclusions

What we observe numerically (formation of wrinkles) is
somewhat typical of an illposed evolution problem formally
arising as gradient flow for an energy that is not convex when
relaxed with the addition of a small higher order perturbation,
or due to the discretization.

The question is whether or not there is a “natural” way to
describe the evolution in the singular limit ε→ 0 (or h→ 0).

Surprisingly it seems that in most cases the limit is not the
gradient flow by the convexified energy.

This is not easily seen for the bidomain system due to the
large wrinkles that arise even for quite small values of ε.
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