Completion of visible contours

Maurizio Paolini

Università Cattolica di Brescia

ICNAAM 2010, Rhodes

joint work with **Giovanni Bellettini** (Università di Roma "Tor Vergata") and **Valentina Beorchia** (Università di Trieste)

Outline

- Introductory animation
- The problem
- Apparent contour (with Huffman labelling)
- Visible contour
- Main result and sketch of the proof
- Implementation
- Examples

Related work:

[Karpenko,Hughes] [Carter,Kamada,Saito] [Whitney] [Haefliger] [Ohmoto,Aicardi]

<ロ> (日) (日) (日) (日) (日)

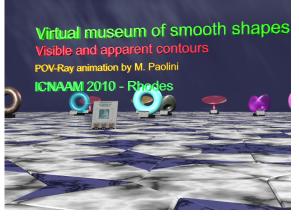
Outline

- Introductory animation
- The problem
- Apparent contour (with Huffman labelling)
- Visible contour
- Main result and sketch of the proof
- Implementation
- Examples

Related work: [Karpenko,Hughes] [Carter,Kamada,Saito] [Whitney] [Haefliger] [Ohmoto,Aicardi]

個 と く ヨ と く ヨ と …

Introductory animation



(3 minutes)

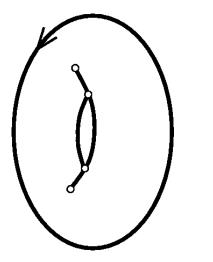
The problem

・ロン ・四と ・日と ・日と

æ

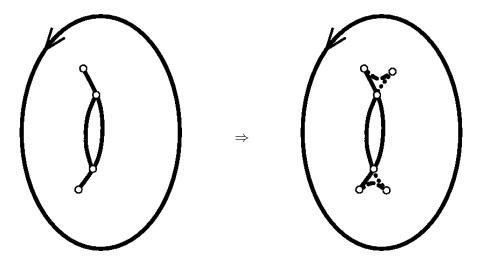
 \Rightarrow

The problem: visible contour ...



・ロ・ ・ 日・ ・ 日・ ・ 日・

The problem: ... apparent contour



◆□ > ◆□ > ◆臣 > ◆臣 > ○

 $\Sigma = \partial E$ of some 3D object (smooth bounded set $E \subset \mathbb{R}^3$).

 $\pi : \mathbb{R}^3 \to \mathbb{R}^2$: projection of \mathbb{R}^3 onto a plane (e.g. $(x_1, x_2, x_3) \to (x_1, x_2)$; it can be a "perspective" projection from some point (*eye*) onto a projection plane placed between the eye and the object *E*.

A **light ray** is the inverse image $\pi^{-1}(x)$ of some point $x \in \mathbb{R}^2$.

The restriction $\phi = \pi_{|\Sigma|}$ is the composition of the embedding $i : \Sigma \to \mathbb{R}^3$ and the projection π .

Note: No selfintersections are allowed!

 $\Sigma = \partial E$ of some 3D object (smooth bounded set $E \subset \mathbb{R}^3$).

 $\pi : \mathbb{R}^3 \to \mathbb{R}^2$: projection of \mathbb{R}^3 onto a plane (e.g. $(x_1, x_2, x_3) \to (x_1, x_2)$; it can be a "perspective" projection from some point (*eye*) onto a projection plane placed between the eye and the object *E*.

A **light ray** is the inverse image $\pi^{-1}(x)$ of some point $x \in \mathbb{R}^2$.

The restriction $\phi = \pi_{|\Sigma|}$ is the composition of the embedding $i : \Sigma \to \mathbb{R}^3$ and the projection π .

Note: No selfintersections are allowed!

 $\Sigma = \partial E$ of some 3D object (smooth bounded set $E \subset \mathbb{R}^3$).

 $\pi : \mathbb{R}^3 \to \mathbb{R}^2$: projection of \mathbb{R}^3 onto a plane (e.g. $(x_1, x_2, x_3) \to (x_1, x_2)$; it can be a "perspective" projection from some point (*eye*) onto a projection plane placed between the eye and the object *E*.

A light ray is the inverse image $\pi^{-1}(x)$ of some point $x \in \mathbb{R}^2$.

The restriction $\phi = \pi_{|\Sigma}$ is the composition of the embedding $i : \Sigma \to \mathbb{R}^3$ and the projection π .

Note: No selfintersections are allowed!

소리가 소문가 소문가 소문가

 $\Sigma = \partial E$ of some 3D object (smooth bounded set $E \subset \mathbb{R}^3$).

 $\pi : \mathbb{R}^3 \to \mathbb{R}^2$: projection of \mathbb{R}^3 onto a plane (e.g. $(x_1, x_2, x_3) \to (x_1, x_2)$; it can be a "perspective" projection from some point (*eye*) onto a projection plane placed between the eye and the object *E*.

A light ray is the inverse image $\pi^{-1}(x)$ of some point $x \in \mathbb{R}^2$.

The restriction $\phi = \pi_{|\Sigma}$ is the composition of the embedding $i : \Sigma \to \mathbb{R}^3$ and the projection π .

Note: No selfintersections are allowed!

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

The singular curve $S \subset \Sigma$ is the set of points where the **light ray** is tangent to the surface.

The apparent contour $\Phi = \pi(S)$ is the projection of S.

 Σ is in **generic position** with respect to π if the topological structure of Φ is stable under small perturbations of Σ and π .

Generically: Φ is the jump set of the function that counts the number of preimages of π in Σ .

- 4 回 ト 4 ヨ ト 4 ヨ ト

The singular curve $S \subset \Sigma$ is the set of points where the **light ray** is tangent to the surface.

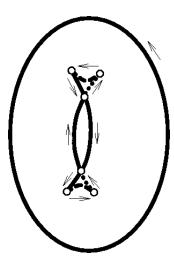
The apparent contour $\Phi = \pi(S)$ is the projection of *S*.

 Σ is in **generic position** with respect to π if the topological structure of Φ is stable under small perturbations of Σ and π .

Generically: Φ is the jump set of the function that counts the number of preimages of π in Σ .

向下 イヨト イヨト

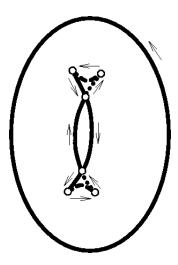
Apparent contour (2)



Roughly the **Apparent Contour** is a *sketch* of the (partially transparent) surface.

- 1. Oriented plane "graph" possibly with closed arcs
- 2. Nodes can only be: crossings and cusps
- 3. Orientation must be consistent at nodes and at cusps (see Figure)
- 4. Suitable regularity requirements

Apparent contour (2)



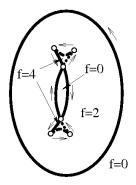
Roughly the **Apparent Contour** is a *sketch* of the (partially transparent) surface.

- 1. Oriented plane "graph" possibly with closed arcs
- 2. Nodes can only be: crossings and cusps
- 3. Orientation must be consistent at nodes and at cusps (see Figure)
- 4. Suitable regularity requirements

Apparent contour (3)

We define $f : \mathbb{R}^2 \setminus \Phi \to 2\mathbb{N}$ such that

- 5. f = 0 at infinity
- 6. $f \ge 0$
- 7. Locally constant on the complement of Φ
- 8. Jumps of 2 across arcs of Φ
- The larger value of f lies on the left of arcs of Φ



f is the number of intersections of the light ray with Σ ; $\{f = 0\}$ is the "background" of the image.

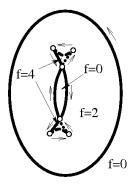
Note: f can be uniquely recovered from Φ and requirement f = 0 at infinity.

Positivity of f is not guaranteed, hence this must be viewed as a further constraint on Φ .

Apparent contour (3)

We define $f : \mathbb{R}^2 \setminus \Phi \to 2\mathbb{N}$ such that

- 5. f = 0 at infinity
- 6. $f \ge 0$
- 7. Locally constant on the complement of $\boldsymbol{\Phi}$
- 8. Jumps of 2 across arcs of Φ
- The larger value of *f* lies on the left of arcs of Φ

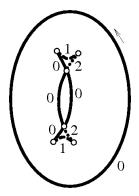


f is the number of intersections of the light ray with Σ ; $\{f = 0\}$ is the "background" of the image.

Note: f can be uniquely recovered from Φ and requirement f = 0 at infinity.

Positivity of f is not guaranteed, hence this must be viewed as a further constraint on Φ .

Finally we need a **labelling** d of the arcs that takes into account the *depth* information that is lost after projection of Σ . Function d counts the number of times that the light ray crosses the surface (transversally) in front of the singular curve.

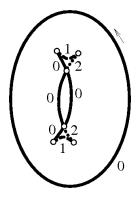


10. $0 \le d \le f_{\mathsf{right}}$

11. *d* jumps by ± 1 across cusps

12. *d* satisfies suitable constraints at crossings of Φ

Finally we need a **labelling** d of the arcs that takes into account the *depth* information that is lost after projection of Σ . Function d counts the number of times that the light ray crosses the surface (transversally) in front of the singular curve.



10. $0 \le d \le f_{\text{right}}$

- 11. *d* jumps by ± 1 across cusps
- 12. *d* satisfies suitable constraints at crossings of Φ

We say that a drawing Φ is an **Apparent contour with Huffman labelling** (in short **Consistent contour**) if requirements 1 - 12 are satisfied. In short:

- ► Topological structure: plane "graph" with only "crossings" and "cusps" with consistent orientation (1 – 3);
- Nonnegative f (this implies a nonlocal of constraint on the orientations) (6);
- ► Equipped with a Huffman labelling (10 12);
- Smoothness requirements (4).

・ロン ・回 と ・ ヨ と ・ ヨ と

We have a crucial result:

[Bellettini, Beorchia, P.]

→ Ξ →

Theorem

A 2D drawing Φ is the apparent contour of some closed surface $\Sigma = \partial E$ embedded in \mathbb{R}^3 if and only if Φ is a **Consistent contour**. Moreover the 3D shape can be reconstructed from Φ up to a monotone deformation of the depth coordinate (distance from the projection plane).

Hence, reconstruction of the 3D structure from a sketch Γ is reconducted to the construction of a **Consistent contour** extending Γ . This is a topological (eventually combinatorial) problem.

We have a crucial result:

[Bellettini,Beorchia,P.]

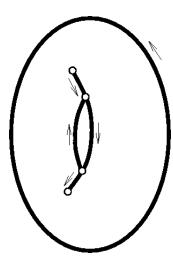
• 3 > 1

Theorem

A 2D drawing Φ is the apparent contour of some closed surface $\Sigma = \partial E$ embedded in \mathbb{R}^3 if and only if Φ is a **Consistent contour**. Moreover the 3D shape can be reconstructed from Φ up to a monotone deformation of the depth coordinate (distance from the projection plane).

Hence, reconstruction of the 3D structure from a sketch Γ is reconducted to the construction of a **Consistent contour** extending Γ . This is a topological (eventually combinatorial) problem.

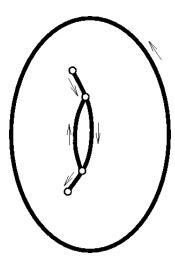
Visible contour



What we actually have is the **visible part** Γ of the apparent contour of our shape (arcs with Huffman label 0).

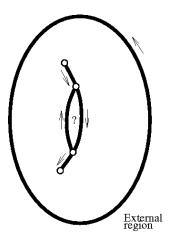
- 1. Oriented plane graph possibly with closed arcs
- 2. Nodes can only be: **T-junctions** and **terminal points**
- 3. Orientation must be consistent across T-junctions (see Figure)
- 4. Suitable regularity requirements

Visible contour



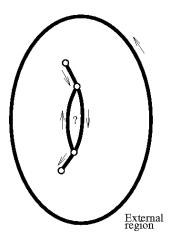
What we actually have is the **visible part** Γ of the apparent contour of our shape (arcs with Huffman label 0).

- 1. Oriented plane graph possibly with closed arcs
- 2. Nodes can only be: **T-junctions** and **terminal points**
- 3. Orientation must be consistent across T-junctions (see Figure)
- 4. Suitable regularity requirements



We call **regions** the connected components of $\mathbb{R}^2 \setminus \Gamma$. The *unbounded* region will be called **external region**. If Γ is the visible contour of some shape we have

- Arcs of F cannot have the external region on their left side;
- 6. In particular **terminal points** cannot be adjacent to the external region.



We call **regions** the connected components of $\mathbb{R}^2 \setminus \Gamma$. The *unbounded* region will be called **external region**. If Γ is the visible contour of some shape we have

- 5. Arcs of Γ cannot have the external region on their left side;
- 6. In particular **terminal points** cannot be adjacent to the external region.

We say that a drawing Γ is an Admissible visible contour if requirements 1-6 above are satisfied. In short:

- ► Topological structure: plane "graph" with only "T-junctions" and "terminal points" with consistent orientation (1 – 3);
- Compatible orientation with respect to the external region; (5 6);
- Smoothness requirements (4).

向下 イヨト イヨト

Given a **Consistent** visible contour Γ , we can extend it to a **Consistent** apparent contour Φ .

Sharpness: a drawing Γ is the visible contour of some Σ if and only if it is a consistent visible contour.

Nonuniqueness: the reconstruction is highly nonunique, even in topological sense.

Remark: The reconstructed apparent contour will have f = 0 (background) in the external region. It is possible to force f = 0 in some internal region, if feasible.

伺い イヨト イヨト

Given a **Consistent** visible contour Γ , we can extend it to a **Consistent** apparent contour Φ .

Sharpness: a drawing Γ is the visible contour of some Σ if and only if it is a consistent visible contour.

Nonuniqueness: the reconstruction is highly nonunique, even in topological sense.

Remark: The reconstructed apparent contour will have f = 0 (background) in the external region. It is possible to force f = 0 in some internal region, if feasible.

We need a way to describe the topological structure of the **visible** contour Γ .

Morse description

record all "events" occurring while a "sweep line" traverses the image from top to bottom.

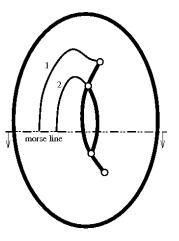
We can assume that all events are "generic", in finite number and occur at different "critical" times.

	local maximum		local minimum)
->	terminal point	`	terminal point
X	NorthEast T-junction	Y	NW T-junction
	SE T-junction	$\boldsymbol{\lambda}$	SW T-junction
-(transv. intersection		

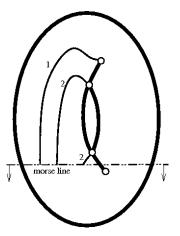
• 3 > 1

Idea: build a partial completion behind a sweeping line (traversing the drawing downwards) and then provide a mechanism to continue this partial contour past each Morse event.

We have to manage each Morse event while taking into account all the **dangling** invisible (d > 0) arcs.



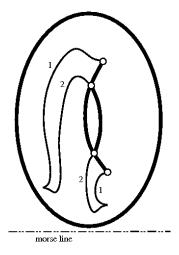
Morse event: \checkmark (crossing a North-East T-junction) produced the result shown in figure (this is an easy case)



Tricky case: Minimum above external region

Morse event: (crossing a 'right'-minimum). If we are above the external region we need to "close" all dangling invisible arcs contained in the involved region. This can be done by adding cusps and joining arcs pairwise in local minima.

Recall: All constraints for the labelling *d* must be met!



The outcome of the procedure is itself a **Morse description** of the reconstructed apparent contour (with a different set of Morse events) augmented with information about orientation and the labelling.

A B K

We implemented the completion procedure in a software code that takes the *morse description* of the visible contour in input and produces the *morse description* of the recovered apparent contour. **Morse description as ASCII text:**

Morse	ASCII	Morse	ASCII
event	representation	event	representation
-(I		
	^		U
_	, (comma)	-	' or '
- ``	\'	-Y-	·/
\prec	1.	\rightarrow	.\

Example

Input description:	Visible contour:
<pre>morse {</pre>	

<ロ> (四) (四) (三) (三) (三)

Example

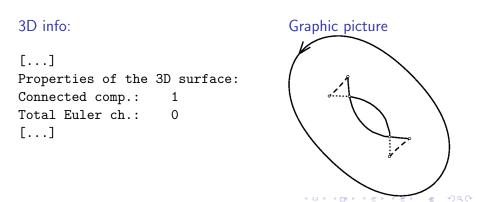
Input	ı:.		Outo	come	:				
descrip	TIC	n:	mors	se {					
morse	{		^10	;					
^		;	d0	^11	u0	;			
Ι,	Ι	;	d0	d1	>0+	u0	;		
/.	Ι	;	d0	d1	^r2	u0	u0	;	
e	Ι	;	d0	d1	u2	Xu0o	10 lu	10;	
\'	Ι	;	d0	d1	u2	Xd2ı	10 1	10;	
'	Ι	;	d0	d1	u2	d2	>1-	u0	;
U		;	d0	<1+	u2	d2	u1	u0	;
}			d0	Ur2	d2	u1	u0	;	
			d0	d2	>2-	u0	;		
			d0	Ur2	u0	;			
			Ur0	;					
			}						

Example

Input	Outcome:	Interpretation:
description:	morse {	_
morse {	^10 ;	\frown
^ ;	d0 ^l1 u0 ;	
, ;	d0 d1 >0+ u0 ;	
/. ;	d0 d1 ^r2 u0 u0 ;	$I \mid \{\Lambda, \Lambda\}$
e ;	d0 d1 u2 Xu0d0 u0 ;	
\' ;	d0 d1 u2 Xd2u0 u0 ;	
' ;	d0 d1 u2 d2 >1- u0 ;	
U;	d0 <1+ u2 d2 u1 u0 ;	
}	d0 Ur2 d2 u1 u0 ;	
	d0 d2 >2- u0 ;	\smile
	d0 Ur2 u0 ;	
	UrO ;	
	}	
		■▶ 《■▶ ■ のへの

[Pasquarelli,P.]

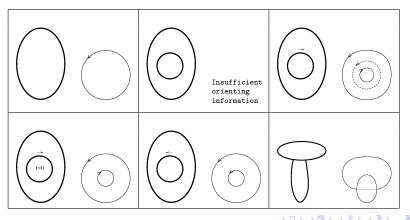
appcontour is a software for topological management of apparent contours; it can read the output of our completion software and extracts topological information up to smooth deformations of \mathbb{R}^2 .



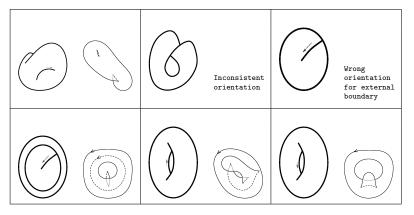
Examples (1)

On the left: input visible contour (to be coded manually with its morse description)

On the right: picture automatically obtained by our completion code feeded into the appcontour software



A few more complex examples...



・ロン ・回 と ・ ヨン ・ モン

THANK YOU FOR YOUR ATTENTION!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □