Completion of visible contours

Maurizio Paolini
Università Cattolica di Brescia

ICNAAM 2010, Rhodes
joint work with Giovanni Bellettini (Università di Roma "Tor Vergata") and Valentina Beorchia (Università di Trieste)

Outline

- Introductory animation
- The problem
- Apparent contour (with Huffman labelling)
- Visible contour
- Main result and sketch of the proof
- Implementation
- Examples

Outline

- Introductory animation
- The problem
- Apparent contour (with Huffman labelling)
- Visible contour
- Main result and sketch of the proof
- Implementation
- Examples

Related work:
[Karpenko,Hughes] [Carter,Kamada,Saito] [Whitney] [Haefliger] [Ohmoto,Aicardi]

Introductory animation

Virtual museum of smooth shapes

Visible and apparent contours
POV-Ray animation by M. Paolini

(3 minutes)

The problem

The problem: visible contour ...

The problem: ... apparent contour

Setting and notations

Σ is a closed surface (smooth, compact 2D manifold without boundary), possibly nonconnected, embedded in \mathbb{R}^{3}.
$\Sigma=\partial E$ of some 3 D object (smooth bounded set $E \subset \mathbb{R}^{3}$).

Setting and notations

Σ is a closed surface (smooth, compact 2D manifold without boundary), possibly nonconnected, embedded in \mathbb{R}^{3}.
$\Sigma=\partial E$ of some 3 D object (smooth bounded set $E \subset \mathbb{R}^{3}$).
$\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$: projection of \mathbb{R}^{3} onto a plane (e.g. $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}\right)$; it can be a "perspective" projection from some point (eye) onto a projection plane placed between the eye and the object E.

A light ray is the inverse image $\pi^{-1}(x$
The restriction $\phi=\pi_{\mid \Sigma}$ is the composit
$i: \Sigma \rightarrow \mathbb{R}^{3}$ and the projection π.
Note: No selfintersections are allowed!

Setting and notations

Σ is a closed surface (smooth, compact 2D manifold without boundary), possibly nonconnected, embedded in \mathbb{R}^{3}.
$\Sigma=\partial E$ of some 3 D object (smooth bounded set $E \subset \mathbb{R}^{3}$).
$\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$: projection of \mathbb{R}^{3} onto a plane (e.g. $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}\right)$; it can be a "perspective" projection from some point (eye) onto a projection plane placed between the eye and the object E.
A light ray is the inverse image $\pi^{-1}(x)$ of some point $x \in \mathbb{R}^{2}$.
The restriction $\phi=\pi_{\mid \Sigma}$ is the composition of the embedding $i: \Sigma \rightarrow \mathbb{R}^{3}$ and the projection π.

Note: No selfintersections are allowed!

Setting and notations

Σ is a closed surface (smooth, compact 2D manifold without boundary), possibly nonconnected, embedded in \mathbb{R}^{3}.
$\Sigma=\partial E$ of some 3 D object (smooth bounded set $E \subset \mathbb{R}^{3}$).
$\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$: projection of \mathbb{R}^{3} onto a plane (e.g. $\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2}\right)$; it can be a "perspective" projection from some point (eye) onto a projection plane placed between the eye and the object E.
A light ray is the inverse image $\pi^{-1}(x)$ of some point $x \in \mathbb{R}^{2}$.
The restriction $\phi=\pi_{\mid \Sigma}$ is the composition of the embedding $i: \Sigma \rightarrow \mathbb{R}^{3}$ and the projection π.

Note: No selfintersections are allowed!

Apparent contour (1)

The singular curve $S \subset \Sigma$ is the set of points where the light ray is tangent to the surface.

The apparent contour $\Phi=\pi(S)$ is the projection of S.
\square Generically: Φ is the jump set of the function that counts the number of preimages of π in Σ.

Apparent contour (1)

The singular curve $S \subset \Sigma$ is the set of points where the light ray is tangent to the surface.

The apparent contour $\Phi=\pi(S)$ is the projection of S.
Σ is in generic position with respect to π if the topological structure of Φ is stable under small perturbations of Σ and π.

Generically: Φ is the jump set of the function that counts the number of preimages of π in Σ.

Apparent contour (2)

Roughly the Apparent Contour is a sketch of the (partially transparent) surface.

Apparent contour (2)

Roughly the Apparent Contour is a sketch of the (partially transparent) surface.

1. Oriented plane "graph" possibly with closed arcs
2. Nodes can only be: crossings and cusps
3. Orientation must be consistent at nodes and at cusps (see Figure)
4. Suitable regularity requirements

Apparent contour (3)

We define $f: \mathbb{R}^{2} \backslash \Phi \rightarrow 2 \mathbb{N}$ such that

f is the number of intersections of the light ray with $\sum ;\{f=0\}$ is the "background" of the image.
Note: f can he unicuely recovered from ϕ and requirement $f=0$
at infinity.
Positivity of f is not guaranteed, hence this must be viewed as a further constraint on Φ

Apparent contour (3)

We define $f: \mathbb{R}^{2} \backslash \Phi \rightarrow 2 \mathbb{N}$ such that
5. $f=0$ at infinity
6. $f \geq 0$
7. Locally constant on the complement of Φ
8. Jumps of 2 across arcs of Φ
9. The larger value of f lies on the left of arcs of ϕ

f is the number of intersections of the light ray with $\Sigma ;\{f=0\}$ is the "background" of the image.
Note: f can be uniquely recovered from Φ and requirement $f=0$ at infinity.
Positivity of f is not guaranteed, hence this must be viewed as a further constraint on Φ.

Huffman labelling

Finally we need a labelling d of the arcs that takes into account the depth information that is lost after projection of Σ. Function d counts the number of times that the light ray crosses the surface (transversally) in front of the singular curve.

Huffman labelling

Finally we need a labelling d of the arcs that takes into account the depth information that is lost after projection of Σ. Function d counts the number of times that the light ray crosses the surface (transversally) in front of the singular curve.

10. $0 \leq d \leq f_{\text {right }}$
11. d jumps by ± 1 across cusps
12. d satisfies suitable constraints at crossings of Φ

Apparent contour with Huffman labelling

We say that a drawing Φ is an Apparent contour with Huffman labelling (in short Consistent contour) if requirements 1 - 12 are satisfied. In short:

- Topological structure: plane "graph" with only "crossings" and "cusps" with consistent orientation (1-3);
- Nonnegative f (this implies a nonlocal of constraint on the orientations) (6);
- Equipped with a Huffman labelling (10 - 12);
- Smoothness requirements (4).

Theorem: recovering the shape

We have a crucial result:

[Bellettini,Beorchia,P.]

Theorem
A 2D drawing Φ is the apparent contour of some closed surface $\Sigma=\partial E$ embedded in \mathbb{R}^{3} if and only if Φ is a Consistent contour. Moreover the 3D shape can be reconstructed from Φ up to a monotone deformation of the depth coordinate (distance from the projection plane).

Hence, reconstruction of the $3 D$ structure from a sketch Γ is reconducted to the construction of a Consistent contour extending Γ. This is a topological (eventually combinatorial)

Theorem: recovering the shape

We have a crucial result:
Theorem
A 2 D drawing Φ is the apparent contour of some closed surface $\Sigma=\partial E$ embedded in \mathbb{R}^{3} if and only if Φ is a Consistent contour. Moreover the 3D shape can be reconstructed from Φ up to a monotone deformation of the depth coordinate (distance from the projection plane).

Hence, reconstruction of the 3D structure from a sketch Γ is reconducted to the construction of a Consistent contour extending Γ. This is a topological (eventually combinatorial) problem.

Visible contour

> What we actually have is the visible part 「 of the apparent contour of our shape (arcs with Huffman label 0).

Oriented plane graph possibly with closed arcs

Nodes can onl be: T-junctions and terminal points Orientation must be consistent across T-junctions (see Figure) Suitable regularity requirements

Visible contour

> What we actually have is the visible part Γ of the apparent contour of our shape (arcs with Huffman label 0).

1. Oriented plane graph possibly with closed arcs
2. Nodes can only be: T-junctions and terminal points
3. Orientation must be consistent across T-junctions (see Figure)
4. Suitable regularity requirements

Visible contour and the external region

We call regions the connected components of $\mathbb{R}^{2} \backslash \Gamma$. The unbounded region will be called external region. If Γ is the visible contour of some shape we have

Arcs of Γ cannot have the external
region on their left side;
In particular termimal points
cannot be adjacent to the external
region

Visible contour and the external region

We call regions the connected components of $\mathbb{R}^{2} \backslash \Gamma$. The unbounded region will be called external region. If Γ is the visible contour of some shape we have
5. Arcs of Γ cannot have the external region on their left side;
6. In particular terminal points cannot be adjacent to the external region.

Admissible visible contour

We say that a drawing Γ is an Admissible visible contour if requirements $1-6$ above are satisfied. In short:

- Topological structure: plane "graph" with only "T-junctions" and "terminal points" with consistent orientation (1-3);
- Compatible orientation with respect to the external region; (5 - 6);
- Smoothness requirements (4).

Main result

Given a Consistent visible contour Γ, we can extend it to a Consistent apparent contour Φ.

Sharpness: a drawing Γ is the visible contour of some Σ if and only if it is a consistent visible contour.

Nonuniqueness: the reconstruction is highly nonunique, even in topological sense

Remark: The reconstructed apparent contour will have $f=0$ (background) in the external region. It is possible to force $f=0$ in some internal region, if feasible

Main result

Given a Consistent visible contour Γ, we can extend it to a Consistent apparent contour Φ.

Sharpness: a drawing Γ is the visible contour of some Σ if and only if it is a consistent visible contour.

Nonuniqueness: the reconstruction is highly nonunique, even in topological sense.

Remark: The reconstructed apparent contour will have $f=0$ (background) in the external region. It is possible to force $f=0$ in some internal region, if feasible.

Morse description

We need a way to describe the topological structure of the visible contour Γ.

Morse description
record all "events" occurring while a "sweep line" traverses the image from top to bottom.

We can assume that all events are "generic", in finite number and occur at different "critical" times.

\sim	local maximum	\checkmark	local minimum $)$
$\boldsymbol{\sim}$	terminal point	$\boldsymbol{\iota}$	terminal point
\boldsymbol{Y}	NorthEast T-junction	\boldsymbol{Y}	NW T-junction
$\boldsymbol{\lambda}$	SE T-junction	$\boldsymbol{\lambda}$	SW T-junction
$\boldsymbol{\zeta}$	transv. intersection		

Proof

Idea: build a partial completion behind a sweeping line (traversing the drawing downwards) and then provide a mechanism to continue this partial contour past each Morse event.

We have to manage each Morse event while taking into account all the dangling invisible ($d>0$) arcs.

Example case: North-East T-junction

Morse event: Y (crossing a North-East T-junction) produced the result shown in figure (this is an easy case)

Tricky case: Minimum above external region

Morse event: $\bigvee_{\text {(crossing a }}$ 'right'-minimum). If we are above the external region we need to "close" all dangling invisible arcs contained in the involved region. This can be done by adding cusps and joining arcs pairwise in local minima.
Recall: All constraints for the labelling d must be met!

Resulting morse description

The outcome of the procedure is itself a Morse description of the reconstructed apparent contour (with a different set of Morse events) augmented with information about orientation and the labelling.

Implementation

We implemented the completion procedure in a software code that takes the morse description of the visible contour in input and produces the morse description of the recovered apparent contour. Morse description as ASCII text:

Morse event	ASCII representation	Morse event	ASCII representation
1	I		
\sim	-	\checkmark	U
ρ	, (comma)	$\stackrel{\square}{6}$	' or '
Y	\'	Y	'/
人	1.	λ	. 1

Example

```
Input
description:
```


Visible contour:

Example

Input description:	Outcome: morse \{				
morse \{	${ }^{1} 10$				
- ;	\|d0 "l1	u0			
1 , I ;	\|d0	d1 >0+	u0 ;		
1 /. \| ;	\|d0	d1 `r2	u0	u0 ;	
\|	el	;	IdO ld1 lu2 Xu0d0 lu0		
\| \'	;	\|d0	d1	u2 Xd2u0	u0 ;
1 ' I ;	\|d0	d1	u2	d2 >1-	u0 ;
U	\|d0 <1+	u2	d2	u1	u0
\}	\|d0 Ur2	d2	u1	u0 ;	
	\|d0	d2 >2-	u0 ;		
	\|d0 Ur2 lu0 ;				
	Ur0 ;				
	\}				

Example

Input description:	Outcome: morse \{						
morse \{	-10 ;						
;	\|d0 ~11	u0 ;					
, \| ;	\|d0	d1 >0+	u0 ;				
\| /.	;	\|d0	d1 r2	u0	u0 ;		
\|	e		;	\|d0	d1	u2 Xu0d0	u0 ;
\| \'	;	\|d0	d1	u2 Xd2u0	u0 ;		
1×1;	\|d0	d1	u2	d2 >1-	u0		
U ;	\|d0 <1+	u2	d2	u1	u0 ;		
\}	\|d0 Ur2	d2	u1	u0 ;			
	\|d0	d2 >2-	u0 ;				
	\|d0 Ur2 lu0 ;						
	Ur0 ;						
	\}						

Interpretation:

Using "appcontour" software

[Pasquarelli,P.]

 appcontour is a software for topological management of apparent contours; it can read the output of our completion software and extracts topological information up to smooth deformations of \mathbb{R}^{2}.3D info:
[...]
Properties of the 3D surface:
Connected comp.:
Total Euler ch.: 1
[...]

Graphic picture

Examples (1)

On the left: input visible contour (to be coded manually with its morse description)
On the right: picture automatically obtained by our completion code feeded into the appcontour software

Examples (2)

A few more complex examples...

		Inconsistent orientation	?	Wrong orientation for external boundary

Thanks

THANK YOU FOR YOUR ATTENTION!

