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Anisotropy (d=2,3)

ϕ : R
d → R

+ describes the anisotropy:

ϕ(ξ) ≥ 0 ∀ξ ∈ R
d; ϕ(ξ) = 0 ⇐⇒ ξ = 0

ϕ(tξ) = tϕ(ξ), ∀t ≥ 0 (Homogeneity of degree one)

ϕ is convex, i.e. ϕ(ξ + η) ≤ ϕ(ξ) + ϕ(η): triangular
inequality

That is, ϕ is a (possibly nonsymmetric) norm.
Wϕ = {ϕ(ξ) ≤ 1} (Wulff shape)

ϕ regular ⇐⇒ Wϕ is smooth and strictly convex
ϕ crystalline ⇐⇒ Wϕ is a polygon/polyhedron
We shall mainly focus on a cylindrical Wϕ
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Anisotropy (2)

Dual norm ϕo : R
d → R

+:

ϕo(ξ⋆) = max
ξ∈Wϕ

ξ · ξ⋆

(ϕo is also a norm, giving the surface energy density)
Fϕ = {ξ : ϕo(ξ) ≤ 1} (Frank diagram)
T o : R

d → R
d given by T o(ξ) = ϕo(ξ)∇ξϕ

o(ξ) = 1
2∇ξ[ϕ

o(ξ)]2

Duality mapping, nonlinear, monotone, T o : Fϕ ↔ Wϕ,
homogeneous of degree one (regular ϕ)

Multivalued maximal monotone graph (crystalline ϕ)

T o(ξ) =
1

2
∂ξ[ϕ

o(ξ)]2
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Some examples: 2D

Fφ Wφ

T o

Regular anisotropy
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Some examples: 2D

Fφ Wφ

T o

Regular anisotropy

T o

Fφ Wφ

Crystalline anisotropy
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Some examples: 3D

Crystalline anysotropy in 3D (hexagonal prism)
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Some examples: 3D

Crystalline anysotropy in 3D (hexagonal prism)

Mixed-type anisotropy in 3D (cylinder)
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Anisotropic MCF

Σ(t)

A(t)

ν

nϕ

Cahn-Hoffmann vector field:

nϕ = T o(νϕ) where νϕ =
ν

ϕo(ν)

Anisotropic curvature:

κϕ = div nϕ note that κ = div ν
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Anisotropic MCF (2)

Evolution law:

V = −κϕnϕ

[“Gradient flow” of Pϕ =
∫
Σ ϕo(ν) ]

Also equivalent to Vν = −ϕo(ν)κϕ

Known exact evolution: The Wulff shape shrinks
selfsimilarly

Σ(t) =
√

1 − 2(d − 1)t ∂Wϕ
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Crystalline evolution

[Bellettini,Novaga,P.]
What if ϕ is crystalline?
nϕ is not determined by ν:

nϕ ∈ T o(νϕ)

Consequently the curvature κϕ = div nϕ cannot be derived
pointwise from the shape of Σ(t). nϕ must be treated as an
unknown itself.
Selfsimilar evolution starting from the Wulff shape still gives
an explicit solution by choosing

nϕ(x) = x/ϕ(x), x ∈ Σ(t)
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Examples of computation ofnϕ
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Crystalline evolution 2

Existence and uniqueness of the resulting evolution is
expected, partial results:

Existence and uniqueness of evolution starting from a
convex initial set
[Bellettini-Caselles-Chambolle-Novaga],

Uniqueness and comparison with the Allen-Cahn
[Bellettini-Novaga]

[show numerical simulations, Ctrl-F3, wulffmovies.sh]

Local velocity is not always determined only by the local
shape: nonlocal evolution law
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Cylindrical anisotropy

We shall now focus on the cylindrical anisotropy, which is
of mixed type. Frank diagram (left) and Wulff shape (right):

Preferred normals to an evolving surface correspond to the

North and South poles and to the equator in the sphere of

unit normals. A typical evolution presents plateaus and ver-

tical walls (Admissible evolution ).
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A top face

Let F = F (t) denote a top face: a plateau which is a local
maximum for the surface. We are interested in the evolution
of F .
Two ingredients:

Erosion from the surrounding
walls

Vertical velocity of F (possible
creation of fractures/bending)

F

On F restriction nϕ ∈ T o(νϕ) means nϕ in the top face of the
Wulff shape, i.e. nϕ = (ñϕ, 1) with ñϕ ∈ R

2, |ñϕ| ≤ 1

[show numerical simulation, Ctrl-F3, bendevolution.sh]
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Canonical selection

Loosely speaking the evolution is a gradient flow with a
(not strictly) convex energy. In spite of the apparent
freedom in the choice of nϕ ∈ T o(νϕ) on the top face F , the
evolution law selects a canonical representative obtained
by solving the minimum problem

∫

F

|div ξ|2 → min, ξ ∈ R
2, |ξ| ≤ 1, ξ = ν at ∂F

Let ξ̄ by a minimizer. The vertical velocity is then given by
V = −div ξ̄ [Giga,Gurtin,Matias]

div ξ̄ = constant ⇐⇒ F does not break/bend
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The problem

F ⊂ R
2 bounded, open, smooth

K = {ξ : F → R
2 : div ξ ∈ L2, ‖ξ‖L∞ ≤ 1, ξ|∂F = ν}

F(ξ) = 1
2

∫
F |div ξ|2

Problem: Find min{F(ξ) : ξ ∈ K}

Convex minimization problem

Existence of a minimizer ξ̄

F

ξ

ν

Uniqueness up to divergence-free vector fields

Remark: ∀ξ ∈ K we have −Vmean := 1
|F |

∫
F div ξ = |∂F |

|F | ,

hence if there exists ξ̄ ∈ K with constant divergence (F is

calibrable ), then ξ̄ is a minimizer of F
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Remarks and questions

Elasticity problem with a constraint on the deformation
vector

Select a canonical minimizer: gradient of a scalar
field? NO [Giga, Rybka, P.]

Find a numerical approximation of a solution

Find equivalent formulations
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Numerical approximation

Piecewise affine finite elements:

Th triangular mesh; h > 0 mesh size; N internal nodes

Fh := ∪K∈Th
K ≈ F

Vh := {v ∈ H1(Fh) : v|K ∈ P1 ∀K ∈ Th}

Kh := [Vh]2 ∩ K

Problem: Find min{
∫
Fh

|div ξh|
2 : ξh ∈ Kh}

[Novaga, E. Paolini; P.]
Convex minimization problem in dimension 2N (in fact:
quadratic minimization with quadratic constraints)
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Minimization technique

ξ ∈ Kh =⇒ ξ = ξb +
∑N

i=1 ξiφi

where ξi ∈ R
2 is the nodal value of ξ at the internal node xi;

ξb ∈ Kh vanished at all internal nodes; {φi}i is the canonical
basis (hat functions) of Vh.

Then Fh(ξ) = 1
2

∫
Fh

|div ξh|
2 = 1

2U tAU − btU + c

where U ∈ R
2N is the concatenation of ξi, i = 1, ..., N ;

A is a 2N × 2N matrix (stiffness matrix) made of N × N

blocks Aij ∈ M(2) defined by Aij =
∫
Fh

∇φi ⊗∇φj, b ∈ R
2N

and c ∈ R come from the boundary condition

Matrix A turn out to be symmetric and positive definite
The difficulty then comes from the constraints
|ξi|

2 = ξt
iξi ≤ 1, i = 1, ..., N
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Minimization technique (2)

First we solve AU = b (unconstrained global minimizer)
with conjugate gradient and project the result on the
constraint

Then we iterate with a (projected) gradient method with
a projection on the constraint after each iteration.

Test example F is the unit circle
h = 0.07, N = 480, 210 conjugate
gradient steps, no gradient itera-
tions. F is calibrable, hence the con-
straint is not involved. div ξ̄ ranges
from 1.996247 to 2.002405
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Velocity field for the circle
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Example with corner

5484 internal nodes, 3829 C.G. iterates, 9243 gradient steps,
divergence ranges from 1.18 to 12.7
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Velocity field for the corner
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Nonconvex example

2564 internal nodes, 2299 C.G. iterates, 22675 gradient
steps, divergence ranges from 0.90 to 4.22

Some aspects in the numerical approximation of surfaces evolving by anisotropic mean curvature – p.23/35



Velocity field for the nonconvex example

Some aspects in the numerical approximation of surfaces evolving by anisotropic mean curvature – p.24/35



Why is A positive definite?

The continuous problem is highly degenerate, due to the
invariance w.r.t. divergence-free vector fields; we should
expect roughly half of the eigenvalues of A to vanish. This
does not happen due to the choice of the finite element
space that does not contain divergence-free vector fields
(except the trivial constant ones).
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Circular domain. Plot of the
960 eigenvalues of A
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Calibrability of face F = F (t)

F does not break/bend at time t during evolution

There esists ξ : F → R
2 such that

|ξ| ≤ 1

ξ|∂F = ν (outward normal to ∂F )

div ξ is constant

For all E ⊆ F :
|∂E|
|E| ≥ |∂F |

|F | =: λ̄ (comparison principle)

EF

(if F is convex) F is calibrable ⇐⇒ maxx∈∂F κ∂F (x) ≤ λ̄
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Prescribed curvature problem

For λ ∈ R solve a prescribed curvature problem
Fλ(E) = |∂E| − λ|E| → min, E ⊆ F . Set
M(λ) := minE⊆F Fλ(E)

The boundary ∂E ∩ F of a minimizer has curvature λ and
has tangential contact with ∂F

Set λ̄ = |∂F |
|F | and λ∗ = infE⊆F

|∂E|
|E| (λ∗ ≤ λ̄)

∀λ M(λ) ≤ 0, M(λ) is nonincreasing in λ

λ ≤ λ∗ =⇒ M(λ) = 0

λ > λ∗ =⇒ M(λ) < 0

F is calibrable ⇐⇒ λ∗ = λ̄ ⇐⇒ M(λ̄) = 0
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Finding the contours of the velocity field

Find M(λ̄) (by solving a prescribed curvature problem).
If result is 0 then STOP (the velocity field is constant
= λ̄)

Decrease λ and find M(λ) untill the result is zero
(bisection method). Let λ∗ be the limiting value

Let E∗ minimize Fλ∗(E), i.e. Fλ∗(E∗) = 0, then the
velocity field is λ∗ in E∗

Find the minimizer for Fλ(E) for λ > λ∗ and obtain the
level set where velocity is λ (boundary of the minimizer)
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Prescribed curvature problem 2

Identifying E with its characterestic function v we have
equivalently

Fλ(v) =

∫

F

|Dv| −

∫

F

λv +

∫

∂F

v, v ∈ BV (F ; {0, 1})

Using the coarea formula Fλ can be equivalently minimized
on K = BV {F ; [0, 1]} which is a convex set

Numerical solution: convex minimization algorithm using

P 1 finite elements plus regularization |Dv| ≈
√

ǫ2 + |∇v|2.

[Bellettini-P-Verdi]
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A capillarity problem

Vessel F × [−L,L], L large
enough, containing a fluid with
surface tension and tangential
contact + microgravity

To find an equilibrium configu-
ration we minimize the surface
energy subject to volume con-
straint of the fluid:
constant mean curvature = λ̄

(Lagrange multiplier)
λ̄ = |∂F |

|F |

F
ν

nu
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Capillarity 2

If the surface can be represented by a function u : F → R

then

ξ =
−∇u√

1 + |∇u|2

is the horizontal component of the normal vector, we have

|ξ| ≤ 1 in F

ξ = ν at ∂F

div ξ = λ̄ is constant in F

then ξ is a calibration of F

There exists a graph-like solution iff F is calibrable!
[Concus-Finn]
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Total variation flow

Strong connections with the “minimizing total variation flow”
(gradient flow for

∫
Ω |Du|) defined by Caselles et al.

[Ballester-Caselles-...] [Bellettini-Novaga-Caselles]
We seek an entropy solution of

ut = div

(
Du

|Du|

)

Starting from the characteristic function u0 = χF of F

F is calibrable ⇐⇒ the solution is of the form u(t) = σ(t)u0

for an appropriate rescaling scalar function σ
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Anisotropic Allen-Cahn

ǫ > 0 singular perturbation parameter,
Ψ : R → R

+ a double well potential
(e.g. Ψ(s) = (1 − s2)2), ψ = Ψ′

Ψ

−1 1
{

ǫ∂u
∂t − ǫdiv T o(∇u) + 1

ǫψ(u) = 0

+ initial and boundary conditions

Typical profile of u:

+1

−1

O(ǫ)
If T o = Id then Σǫ = {u = 0} approximates a surface
evolving by mean curvature

[Evans-Soner-Souganidis, De Mottoni-Schatzman,...]
with an error of order O(ǫ2| log ǫ|2)
[Bellettini-Nochetto-P-Verdi,...]
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Identifying the singular limit

Now we can identify the singular limit of the anisotropic
Allen-Cahn when T o is regular (nonlinear)

The zero level set Σǫ of u (solution of the anisotropic
Allen-Cahn) approximates (with an error O(ǫ2| log ǫ|2) a
surface evolving by anisotropic mean curvature flow
V = −κϕnϕ

[Elliott-Schätzle-P, Bellettini-Colli Franzone-P, ...]

Anisotropic Allen-Cahn is well defined also for crystalline

anisotropy (T o is a maximal monotone graph, and the equa-

tion must be interpreted suitably); what is the singular limit?
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Thank you

Thank you!
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