[Anno precedente]
[2005]
[Anno successivo]

**[01/2005]**-
*Binary operations derived from symmetric permutation sets and applications to absolute geometry*,*Discrete Math.***208, no. 2-3**(2008), 415-421. **[02/2005]**-
*2D slightly compressible ideal flow in an exterior domain*,*J. Math. Fluid Mech.***8 (4)**(2006), 564-590. **[03/2005]**-
*On the probability of generating prosoluble groups*. **[04/2005]**-
*Profinite groups with a rational probabilistic zeta function*. **[05/2005]**-
*Non-homogeneous linear symmetric hyperbolic systems with characteristic boundary*,*Differential Integral Equations***19 (1)**(2006), 51-74. **[06/2005]**-
*Gauge invariance and asymptotic behavior for the Ginzburg-Landau equations*,*J. Math. Anal. Appl.***329**(2007), 357-375. **[07/2005]**-
*Non-Homogeneous Quasi-Linear Symmetric Hyperbolic Systems with Characteristic Boundary*,*Int. J. Pure Appl. Math.***23 (1)**(2005), 39-59. **[08/2005]**-
*Incidence left loops derived from kinematic algebras*,*Res. Math.***50**(2007), 125-139. **[09/2005]**-
*Asymptotic behavior of the energy to a thermo-viscoelastic Mindlin-Timoshenko plate with memory*,*Int. J. Pure Appl. Math.***21**(2005), 175-198. **[10/2005]**-
*On the Principle of Virtual Powers in Continuum Mechanics*. **[11/2005]**-
*A result of L^2-well posedness concerning the system of linear elasticity in 2D*. **[12/2005]**-
*Regularity and uniqueness for the stationary Large Eddy Simulation model*. **[13/2005]**-
*The probabilistic zeta function of finite simple groups*. **[14/2005]**-
*Global solution to a one dimensional phase transition model with strong dissipation*. **[15/2005]**-
*On the decay of the energy for systems with memory and indefinite dissipation*,*Asymptot. Anal.***49, no. 3-4**(2006), 189-204. **[16/2005]**-
*Global existence for a contact problem with adhesion*. **[17/2005]**-
*Existence results for a phase transition model based on microscopic movements*. **[18/2005]**-
*Exponential stability for a transmission problem in thermoelasticity with memory*,*Acta Appl. Math.***99 (1)**(2007), 1-27. **[19/2005]**-
*Attractor for a class of generalized viscous Cahn-Hilliard equations*,*In: Dissipative Phase Transitions, P. Colli, N. Kenmochi & J. Sprekels eds, Series on "Advances in Mathematics for Applied Sciences" 71 World Sci. Publishing.*(2006), 247-268. **[20/2005]**-
*Boundary controllability for a wave equation with memory*. **[21/2005]**-
*Existence and uniqueness results for general rate-independent hysteresis problems*,*Math. Models Methods Appl. Sci.***17**(2007), 81-123. **[22/2005]**-
*On the L^2-well posedness of an initial boundary value problem for the 3D linear elasticity*. **[23/2005]**-
*Existence and asymptotic analysis of a phase field model for supercooling*,*Quart. Appl. Math.***64**(2006), 291-319. **[24/2005]**-
*Asymptotic stability of semigroups associated with linear weak dissipative systems with memory*,*J. Math. Anal. Appl.***326**(2007), 691-707. **[25/2005]**-
*Attractors for gradient flows of non convex functionals and applications to quasistationary phase field models*,*Arch. Ration. Mech. Anal.*, in press. **[26/2005]**-
*Irreducible (2,3,7)-subgroups of PGL(n,F), n<8.*. **[27/2005]**-
*A thermodynamic approach to non-isothermal phase-field evolution in continuum physics*,*Physica D***214**(2006), 144-156. **[28/2005]**-
*Nonlinear compressible vortex sheets in two space dimensions*,*Ann. Scient. Éc. Norm. Sup. 4e série***41**(2008), 85-139. **[29/2005]**-
*Identifying a simple group of Lie type from its Dirichlet polynomial*. **[30/2005]**-
*Analytical integrations in 2D BEM fracture mechanics*. **[31/2005]**-
*On compressible and incompressible vortex sheets*,*Analysis and Simulation of Fluid Dynamics, Series: Advances in Mathematical Fluid Mechanics, Eds. Calgaro, Coulombel, Goudon, Birkhäuser*(2007). **[32/2005]**-
*Crack initiation in elastic bodies*. **[33/2005]**-
*A density result for Sobolev spaces in dimension two, and applications to stability of nonlinear Neumann problems*. **[34/2005]**-
*Well-posedness and long-time behaviour for a model of contact with adhesion*,*Indiana Univ. Math. J.*, in press.

MP